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Abstract

The integration of nanoparticles into plant cryopreservation protocols holds great promise

for improving the survival rates and recovery potential of explants. This study aimed to verify

the effect of nanoparticles on the ex-vitro performance of cryopreservation-derived plants.

Lamprocapnos spectabilis (L.) Fukuhara (bleeding heart) ’Gold Heart’ and ’Valentine’ culti-

vars were used as the plant material. The encapsulation-vitrification cryopreservation proto-

col of shoot tips included the preculture, encapsulation, dehydration, storage in liquid

nitrogen, rewarming, and recovery steps. Gold (AuNPs), silver (AgNPs), or zinc oxide

(ZnONPs) nanoparticles were added at varying concentrations, either into the preculture

medium or the protective bead matrix during encapsulation. After the in vitro recovery, the

plants were transferred to the glasshouse and subjected to detailed biometrical, biochemical

and cytogenetic analyses. Nanoparticles had no evident effect on the acclimatization effi-

ciency (80–100% survival) and leaf number in L. spectabilis ‘Gold Heart’. Nonetheless,

shoots developed from alginate beads supplemented with 5 ppm AuNPs were twice as long

as the control, while the leaves of plants grown on the preculture medium with ZnONPs con-

tained significantly more chlorophyll and had higher Leaf Soil-Plant Analysis Development

(SPAD) values. Moreover, several NPs treatments stimulated the development of leaves,

including their surface area, length, and perimeter. Higher ZnONPs levels enhanced also

the replication process, resulting in higher nuclear DNA content. As for L. spectabilis ‘Valen-

tine’, alginate augmentation with 5 ppm AgNPs or 5 ppm ZnONPs stimulated the elongation

of shoots. There was also a tendency suggesting a positive influence of 5 ppm AgNPs in the

alginate bead matrix on foliar growth. The effect of nanoparticles on the content of flavo-

noids, anthocyanins, and stress markers in the plants varied depending on the treatment

and cultivar, but also on the organ studied (leaf or stem). Overall, L. spectabilis ‘Gold Heart’

was more stress-tolerant and genetically stable than ‘Valentine’ judging by the activity of

Photosystem II (PSII) and flow cytometric analyses, respectively. The complex effects of

nanoparticles on survival, biometric parameters, physiological responses, and cytogenetic

events underscore the intricate interplay between nanoparticles and plant systems.
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Nonetheless, our research confirmed the positive effect of nanoparticles on the ex-vitro

growth and development of L. spectabilis plants after cryostorage.

Introduction

The application of nanoparticles (NPs) in plant biotechnology has emerged as a cutting-edge

and innovative field with significant implications for agricultural sustainability and crop

improvement. Nanoparticles, characterized by their small size (below 100 nm) and unique

physicochemical properties, can be applied to enhance various aspects of plant biology [1].

From nanoparticle-mediated delivery of nutrients and agrochemicals to the development of

nanomaterial-based sensors for real-time monitoring of plant health and environmental con-

ditions, this rapidly evolving discipline presents novel solutions to long-standing challenges in

agriculture [2].

The utilization of NPs in plant tissue culture offers a range of innovative applications and

benefits. Nanoparticles have been integrated into plant tissue culture protocols to enhance and

optimize various aspects of the process [3]. These tiny structures have proven effective in

improving the growth and development of plant tissues, from the micropropagation of elite

cultivars [4] to the genetic transformation of recalcitrant species [5].

In micropropagation, the controlled release of growth regulators and nutrients via nanopar-

ticle carriers has allowed for more precise and sustained delivery to cultured plant tissues,

resulting in enhanced shoot multiplication rates, root development, and overall growth perfor-

mance [3]. Gold nanoparticles (AuNPs) promoted the in vitro proliferation of Nardostachys
jatamansi DC [6]. Furthermore, NPs have been employed to alleviate issues associated with

hyperhydricity syndrome, a common physiological disorder in tissue culture, by regulating the

water status and hormonal balance in plant explants [7]. This aids in the production of health-

ier and more acclimatization-ready plantlets. Zinc oxide nanoparticles (ZnONPs) were used to

modify the architecture of in vitro-propagated plants of Chrysanthemum × morifolium
(Ramat.) Hemsl. [8] and their biochemical profile [9]. On the other hand, silver nanoparticles

(AgNPs) were utilized in mutation breeding due to their genotoxic effects if applied at higher

concentrations [10]. The use of nanoparticles in plant tissue culture has not only advanced the

efficiency of micropropagation and breeding techniques but also raised intriguing questions

regarding their potential use in long-term storage and cryopreservation.

Cryopreservation, the process of preserving biological materials at ultra-low temperatures

of liquid nitrogen (LN; -196˚C), is a critical technique in various fields, including biotechnol-

ogy and agriculture [11]. Climate change, habitat loss and population growth are a significant

threat to plant species and agricultural diversity. Cryopreservation offers a reliable method for

preserving clonal germplasm, endangered species, and crop wild relatives. By storing plant tis-

sues at ultra-low temperatures, metabolic activities are arrested, allowing for the preservation

of genetic material for extended periods [12]. As such, advancements in cryopreservation tech-

niques are essential for the resilience of agricultural systems worldwide. Conventional cryo-

preservation methods mainly rely on the use of cryoprotectants (CPAs) that are able to

penetrate the cell membrane, such as dimethyl sulfoxide (DMSO) and ethylene glycol. How-

ever, these CPAs (DMSO especially) have been shown to be toxic, causing adverse reactions in

cells [12, 13]. Therefore, it is of great interest to improve the existing cryo-protocols by substi-

tuting aggressive CPAs with more effective materials. Recent discoveries in nanotechnology

have triggered interest in the application of nanoparticles to enhance the efficiency and success

of cryopreservation [14].
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Nanoparticles have been harnessed as cryoprotectants and ice modulators, mitigating the

formation of ice crystals and minimizing cellular damage during the freezing and thawing pro-

cess in animal cells [15]. Their small size allows them to penetrate cell membranes and interact

with intracellular components, safeguarding the structural and functional integrity of biologi-

cal materials [16]. Furthermore, nanoparticles can serve as carriers for various bioactive mole-

cules, such as cryoprotectants, offering their controlled and targeted delivery to the cells prior

to cryopreservation. This approach not only enhanced semen survival but also reduced the

toxicity associated with conventional cryoprotectants [17].

While the potential benefits of nanoparticle-assisted cryopreservation are applied with ani-

mal cells for cryopreservation of gametes and embryos [18, 19], their use with plant tissues is

highly reduced. It was reported with L. spectabilis (L.) Fukuhara ‘Valentine’ that the efficiency

of shoot tip cryopreservation via encapsulation-vitrification can be elevated by even 20% after

adding 13-nm AuNPs at 10 ppm concentration into the alginate bead matrix [20]. On the

other hand, the ‘Gold Heart’ cultivar benefited from alginate supplementation with 5 ppm

AgNPs and 5–15 ppm ZnONPs, leading to an over 28% increase in the survival rate of shoot

tips [21]. Therefore, deeper research in this regard is necessary. It is particularly important to

address concerns about the long-term effects of nanoparticles within cryopreserved biological

systems. Numerous studies reported the effect of cryopreservation on the field performance of

LN-derived plants [22, 23]. In most of them, no significant changes in growth and morphology

were observed as it is assumed that cryopreservation generally does not affect the properties of

plants [22]. Some researchers, however, showed interesting alterations in the plant material.

For example, reduced seed germination was observed in the cryopreserved seeds of Zea mays
and Glycine max [24, 25]. Seed cryopreservation decreased Cd, Cu and Na uptake and

increased the absorption of Al and B elements in the cryo-derived seedling of Phaseolus vulga-
ris L. [26]. While cryopreservation-derived plants exhibited some reduction in root formation

and vegetative growth, the quantity and quality of flowers remained comparable between cryo-

and in vitro-derived plants of the perennial ornamental species Argyranthemum maderense
(D. Don) Humphries [27]. Likewise, despite cryopreservation by encapsulation-dehydration

did not disturb the chimeric structure of C. morifolium albeit it affected its growth (elongation

of shoots, size of leaves and flowering time) in a cultivar-dependent matter [28].

There are also studies reporting the significant impact, both positive and negative, of nano-

particles on the field growth of plants, depending on (among others) the species, type, size,

shape and concentration of NPs [29]. For instance, spraying 10 ppm ZnONPs on leaves pro-

moted the growth and biomass accumulation of Coffea arabica L. plants [30]. A low concentra-

tion of iron nanoparticles (FeNPs) could stimulate the growth of Capsicum annuum L.

seedlings [31], while AuNPs positively influenced all growth parameters of Arabidopsis seed-

lings [32]. Single-walled carbon nanotubes (SWCNT), significantly enhanced photosynthetic

yield in chloroplasts, achieving a three-fold increase due to their ability to facilitate rapid elec-

tron transport and boost the activity of plant signaling molecules like nitric oxide [33]. Addi-

tionally, nanoparticles, such as silicon oxide (SiO2NPs), cuprum (CuNPs), iron (FeNPs),

molybdenum (MnNPs), and potassium (KNPs), enable plants to better adapt to stressful con-

ditions and increase their yields by mitigating the toxic effects of stressors and influencing var-

ious morphological, anatomical, physiological, biochemical, and molecular attributes of plants

[34]. In contrast, high concentrations (50, 100 and 200 ppm) of ZnONPs, and AgNPs led to

leaf size reduction, chlorosis and lateral roots inhibition in Arabidopsis thaliana (L.) Heynh.

[35] and Cucumis sativus L. seedlings [36]. To date, there is no information on the ex vitro per-

formance of plant material cryopreserved with the use of nanomaterials. There is also little

research evaluating the simultaneous effect of various types of nanoparticles on different plant

cultivars. As such, continued research is essential to understand the full scope of nanoparticle
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interactions within plant systems and to ensure the safe and responsible integration of these

nanomaterials in agricultural practices.

The aim of this study was to investigate the impact of AuNPs, AgNPs, and ZnONPs, applied

at various concentrations at two steps of the encapsulation-vitrification protocol (preculture

and encapsulation) on the ex-vitro performance of LN-derived Lamprocapnos spectabilis ’Gold

Heart’ and ’Valentine’ cultivars. This popular perennial of the Fumarioideae subfamily (Papa-

veraceae) is prized both as an ornamental (indoor/outdoor, pot and cut plant) and medicinal-

cosmetic species [37]. The study focused on assessing the acclimatization survival rates,

detailed biometric parameters, physiological responses, and cytogenetic events of L. spectabilis
plants after cryostorage and transplantation to the glasshouse. The hypothesis assumed that

the addition of specific nanoparticles at optimized concentrations during cryopreservation can

enhance the cryopreservation efficiency in terms of plant growth and development ex vitro.

Materials and methods

Cryopreservation procedure

In vitro-derived microshoots of Lamprocapnos spectabilis (L.) Fukuhara ‘Gold Heart’ and ‘Val-

entine’ were used as the source of explants. The cryopreservation procedure consisted of sev-

eral sequential steps, including preculture, encapsulation, dehydration/vitrification, low-

temperature (LN) storage, rewarming, and recovery, according to the previously developed

protocol [38].

Experiment I—Effect of NPs in the preculture medium

Single-node explants were cultured in vitro for one week on a solid MS medium [39] contain-

ing 9% (w/v) sucrose, 4.65 μM (1.0 mg L-1) kinetin (KIN), and 10 μM (2.62 mg L-1) abscisic

acid (ABA). Ten explants were placed in each culture vessel (glass jar) filled with 30 mL of

medium. The medium was sterilized at 121˚C for 20 min.

Silver, gold (6 nm in diameter), or zinc oxide (13 nm) nanoparticles, at concentrations of 5

and 15 ppm, were distributed equally, through a sterile filter (0.22 μm pore size), on the culture

medium surface immediately after explant inoculation (2 mL per jar). The control group con-

sisted of non-treated explants. The cultures were kept in a growth room at 24˚C ± 1˚C, under

16-h photoperiod conditions and photosynthetic photon flux density of approximately

30.0 μmol m-2 s-1 provided by standard cool daylight TLD 54/36W fluorescent lamps (Konink-

lijke Philips Electronics N.V., Eindhoven, The Netherlands).

After one week, shoot tips (1.0–2.0 mm long) were excised and encapsulated in a 3% (w/v)

sodium alginate solution based on MS medium salts without CaCl2, supplemented with 9%

sucrose. Beads were hardened in 0.1 M CaCl2 for 30 min, rinsed, osmoprotected with a loading

solution (2.0 M glycerol and 0.4 M sucrose), and dehydrated with Plant Vitrification Solution

3 (PVS3; 50% glycerol and 50% sucrose, w/v) for 150 min. Ten beads covered with PVS3 were

placed in a 2.0 mL sterile cryovial and directly immersed in LN.

After a day in LN storage, cryovials were rapidly rewarmed in a water bath, and explants

were rinsed in liquid MS medium with 1.2 M sucrose (for 30 min) and inoculated on the MS

recovery medium with 3% sucrose and 2.22 μM (0.5 mg L-1) 6-benzyladenine (BA). The cul-

tures were kept in the same growth room for 60 days (in total darkness for the first two days).

Experiment II—Effect of NPs in the alginate matrix

The same cryopreservation steps and parameters were used as in Experiment I, with the dis-

tinction that no NPs were added to the preculture medium. Instead, silver (AgNPs), gold
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(AuNPs), and zinc oxide (ZnONPs) nanoparticles at 5 ppm and 15 ppm were incorporated

into the sodium alginate solution during encapsulation. A control group with no nanoparticles

was also included in this experiment.

Acclimatization and ex-vitro growth

The rooted microshoots were transferred to the greenhouse (53˚07’12.0"N 18˚00’29.4"E) in

June for acclimatization and further growth in natural light conditions (20 per experimental

treatment). Plants of L. spectabilis were planted in plastic trays filled with a mixture of peat and

perlite (2:1) provided by Hartmann (Poznań, Poland), sprayed with water for two weeks, and

covered with perforated transparent foil. The acclimatization effectiveness (survival rate) was

assessed after 14 days. One month after transferring to ex vitro conditions, the plants were

transplanted to plastic pots filled with the same substrate and planted in a permanent place on

benches for another 30 days (S1 Fig).

Biometrical analysis of plants

Two months after transferring to the glasshouse, the phenotype analysis of plants was per-

formed visually and with the use of the Royal Horticultural Society Colour Chart (RHSCC)

key [40] in natural light conditions (10 plants per treatment). The length of the shoots was

measured and the number of leaves was counted. By applying the WinFolia 2016b and XLFolia

2016a software (Regent Instruments, Quebec, Canada) and the EPSON Perfection V800 Photo

scanner, the leaf architecture; including the total area, perimeter, length, maximum and aver-

age width were measured. Based on that data, the aspect ratio (the ratio of horizontal width to

vertical length) and the form coefficient (a value that grades the leaf shape as between the

shortest and longest perimeter for a given area) were counted. To evaluate leaf architecture,

three leaves were randomly selected from each plant.

Physiological array: Stress effects and determination of pigments in leaves

and stems

The relative content of flavonoids, anthocyanins, chlorophyll content index (CCI) and Leaf

Soil-Plant Analysis Development (SPAD) value in the leaves and stems was measured in tripli-

cates in each plant using an MPM-100 multi-pigment meter (Opti-Sciences Inc, Hudson, NH,

USA).

The level of stress was measured based on the maximum efficiency of photosystem II (PSII)

in leaves of at least five plants. The fluorescence kinetics of chlorophyll was measured using a

portable plant stress meter OS30p+ (Opti-Sciences Inc) and then initiative fluorescence (F0),

variable fluorescence (Fv), maximum fluorescence (Fm), and their ratios (Fv/Fm and Fv/F0)

were determined and expressed in relative units.

Estimation of nuclear DNA content

The 2C DNA content was estimated using flow cytometry (FCM) in 260 plants (10 plants per

treatment, each plant was considered a single replication). The analysis was performed on

sampled young leaves. All samples for the FCM analysis were prepared according to two-step

procedure by [41] using Otto I buffer (0.1 M citric acid, 0.5% Tween 20) and Otto II buffer

(0.4 M Na2HPO4 12H2O) supplemented with propidium iodide (PI) as fluorescent dye,

RNAse IIA (both at final concentrations of 50 μg mL-1) and β-mercaptoethanol (2 μg mL-1).

As an internal standard, Solanum lycopersicum ´Stupicke´ (2C = 1.96 pg) [42] was used. For

each sample, at least 5,000 nuclei were measured using a CyFlow Space C32 flow cytometer
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equipped with a green solid-state laser (532 nm, 100 mW) as an excitation source (Sysmex Par-

tec GmbH, Görlitz, Germany). The histograms were evaluated using the FlowMax software

(Sysmex Partec GmbH, Görlitz, Germany). The nuclear DNA content was calculated as the

ratio of 2C peaks of the sample and the internal standard, multiplied by the genome size of the

internal standard.

Statistical analysis

The experiments were arranged in a completely randomized design for two cultivars sepa-

rately. Each of the two experiments, involving the application of nanoparticles during the

preculture (prec) or encapsulation (enc) step, comprised seven treatments: control, 5 ppm

AgNPs, 15 ppm AgNPs, 5 ppm AuNPs, 15 ppm AuNPs, 5 ppm ZnONPs, and 15 ppm

ZnONPs.

The obtained results underwent statistical analysis through one-way ANOVA, and mean

comparisons were conducted using Duncan’s Test (P� 0.05) with Statistica 12.0 (StatSoft,

Poland) and ANALWAR-5.2-FR tools. The arcsine transformation was done on data

expressed as a percentage.

Results

Effect of nanoparticles on the ex vitro performance of LN-derived plants

There was no impact of nanoparticles neither on the survival of L. spectabilis ‘Gold Heart’ dur-

ing acclimatization (80–100%) nor on the number of leaves produced (6.8–11.4). Nonetheless,

shoots developed from alginate beads supplemented with 5 ppm AuNPs were two-fold longer

than the control.

As for L. spectabilis ‘Valentine’, the addition of 15 ppm ZnONPs into the preculture

medium affected adversely the acclimatization efficiency (60% survival) compared to most

other treatments and the control (90–100%). Alginate supplementation with 5 ppm AgNPs or

5 ppm ZnONPs stimulated the elongation of shoots that were twice as long as the control. On

the other hand, explants precultured on the medium with 15 ppm ZnONPs produced the low-

est number of leaves (4.6) (Table 1).

The leaves of ‘Gold Heart’ plants were in general yellow-green in color (150a RHSCC

code), while ‘Valentine’ plants were predominantly dark green (143a) (Table 1).

The lowest values of leaf biometric parameters (i.e. the surface area, perimeter, length, max-

imal and average width) in cv. ‘Gold Heart’ were found in the untreated control (Table 2). On

the other hand, several NPs treatments stimulated the development of leaves, with 5 ppm

AgNPs/ZnONPs in the preculture medium or 5 ppm AuNPs in the alginate bead being the

most effective. No significant changes in the leaf shape, determined by the aspect ratio and

form coefficient, were found (Table 2).

On the other hand, none of the experimental treatments stimulated the development of

leaves in cv. ‘Valentine’ compared to the control, although there was a tendency observed sug-

gesting a positive influence of 5 ppm AgNPs in the alginate bead matrix on foliar growth (all of

the studied traits reached the highest values in this combination) (Table 2). Conversely, the

smallest leaves (in terms of all analyzed parameters) were found in the experimental treatment

15 ppm AgNPs in the preculture medium. No change in the aspect ratio was found, however,

leaves of ‘Valentine’ plants from the treatments 15 ppm AgNPs in the preculture medium or

alginate bead, with a higher form coefficient value, were more filiform in shape than the con-

trol (Table 2).
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Effect of nanoparticles on the physiological condition of LN-derived plants

Plants of L. spectabilis ‘Gold Heart’ contained significantly less flavonoids and anthocyanins in

the leaves if grown on the preculture medium with ZnONPs (regardless of concentration). On

the other hand, the same experimental treatments stimulated the synthesis of chlorophyll and

provided the highest SPAD value, which was over two-fold higher than in the control

(Table 3).

In ‘Valentine’ cultivar, none of the NPs-treated plants had more or less flavonoids or chlo-

rophylls in the leaves than the untreated control (Table 3). Likewise, no increase in the SPAD

value was found compared to the control. Conversely, leaves of plants from the treatments

5 ppm AgNPs, 5 ppm ZnONPs or 15 ppm AuNPs in the preculture medium and 5 ppm

AuNPs in the alginate bead contained more anthocyanins (Table 3).

As for the relative content of metabolites in ‘Gold Heart’ stems, it was found that augmenta-

tion of preculture medium with 15 ppm AuNPs stimulated the synthesis of flavonoids and

Table 1. Effect of silver (AgNPs), gold (AuNPs), and zinc oxide (ZnONPs) nanoparticles applied during the preculture (prec) or encapsulation (enc) step of the

encapsulation-vitrification cryopreservation protocol on the survival of plants after 14 days of acclimatization, as well the length of shoots, number of leaves, and

the dominating leaf color (RHSCC) after 60 days of ex vitro growth in Lamprocapnos spectabilis ‘Gold Heart’ and ‘Valentine’.

Survial (%) Shoot length (cm) No. of leaves RHSCC

Treatment Gold Heart

control 100 ± 0 a 37.1 ± 5.22 b-d 9.0 ± 1.51 a 150a

5 ppm AgNPs prec 100 ± 0 a 51.1 ± 6.77 ab 9.7 ± 1.12 a 150a

15 ppm AgNPs prec 100 ± 0 a 36.7 ± 4.44 b-d 8.1 ± 0.48 a 150a

5 ppm AuNPs prec 100 ± 0 a 25.2 ± 3.29 d 7.3 ± 1.07 a 150a

15 ppm AuNPs prec 100 ± 0 a 31.2 ± 4.85 cd 8.6 ± 1.08 a 150a

5 ppm ZnONPs prec 90 ± 10.0 a 34.0 ± 4.49 b-d 7.7 ± 0.72 a 150a

15 ppm ZnONPs prec 80 ± 13.3 a 25.1 ± 4.07 d 7.0 ± 1.08 a 150a

5 ppm AgNPs enc 100 ± 0 a 46.0 ± 6.81 bc 11.4 ± 1.66 a 150a

15 ppm AgNPs enc 100 ± 0 a 39.5 ± 6.02 b-d 9.4 ± 0.95 a 150a

5 ppm AuNPs enc 100 ± 0 a 66.0 ± 10.47 a 9.6 ± 1.35 a 150a

15 ppm AuNPs enc 100 ± 0 a 27.1 ± 2.58 c 6.8 ± 0.54 a 150a

5 ppm ZnONPs enc 100 ± 0 a 30.7 ± 4.69 cd 7.9 ± 0.84 a 150a

15 ppm ZnONPs enc 85.7 ± 9.7 a 29.1 ± 4.85 cd 8.0 ± 1.50 a 150a

Valentine

control 100 ± 0 a 31.9 ± 5.07 b-e 11.9 ± 1.98 a-c 143a

5 ppm AgNPs prec 90 ± 10.0 a 23.7 ± 1.96 c-e 8.4 ± 0.41 c-e 143a

15 ppm AgNPs prec 90 ± 10.0 a 21.9 ± 1.82 de 5.9 ± 0.42 de 143a

5 ppm AuNPs prec 100 ± 0 a 31.0 ± 4.67 b-e 11.2 ± 1.37 a-d 143a

15 ppm AuNPs prec 90.9 ± 9.1 a 17.7 ± 2.11 e 9.0 ± 1.26 b-e 143a

5 ppm ZnONPs prec 90 ± 10.0 a 30.4 ± 8.51 b-e 7.4 ± 1.30 c-e 143a

15 ppm ZnONPs prec 60 ± 16.3 b 19.7 ± 2.72 e 4.6 ± 1.21 e 143a

5 ppm AgNPs enc 100 ± 0 a 65.4 ± 8.57 a 14.4 ± 1.78 ab 143a

15 ppm AgNPs enc 90 ± 10.0 a 47.3 ± 7.85 ab 9.3 ± 1.36 a-e 143a

5 ppm AuNPs enc 85.7 ± 9.7 ab 44.5 ± 8.26 a-d 12.4 ± 2.36 a-c 143a

15 ppm AuNPs enc 84.6 ± 10.4 ab 30.2 ± 8.91 b-e 8.4 ± 0.59 c-e 143a

5 ppm ZnONPs enc 100 ± 0 a 64.7 ± 10.57 a 14.5 ± 2.17 a 143a

15 ppm ZnONPs enc 92.3 ± 10.0 a 45.8 ± 8.71 a-c 11.0 ± 2.14 a-d 143a

* Each number represents the mean value ± standard error. Significant differences in values are determined by Duncan’s post hoc test (P<0.05). Values with at least one

same letter in column are not statistically different.

https://doi.org/10.1371/journal.pone.0310424.t001
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Table 2. Effect of silver (AgNPs), gold (AuNPs), and zinc oxide (ZnONPs) nanoparticles applied during the preculture (prec) or encapsulation (enc) step of the

encapsulation-vitrification cryopreservation protocol on the leaf blade parameters in shoots after 60 days of ex vitro growth in Lamprocapnos spectabilis ‘Gold

Heart’ and ‘Valentine’.

Area (cm2) Perimeter (cm) Length (cm) Max. width (cm)

Treatment Gold Heart

control 13.8 ± 2.11 d 40.0 ± 3.96 e 7.2 ± 0.77 c 5.0 ± 0.44 d

5 ppm AgNPs prec 26.3 ± 3.21 a 58.8 ± 3.86 a 9.1 ± 0.68 a-c 8.0 ± 0.56 ab

15 ppm AgNPs prec 23.0 ± 2.56 ab 54.6 ± 3.80 a-d 9.6 ± 0.74 ab 6.9 ± 0.52 a-c

5 ppm AuNPs prec 22.1 ± 1.89 a-c 54.6 ± 2.53 a-d 9.3 ± 0.51 a-c 7.2 ± 0.38 a-c

15 ppm AuNPs prec 20.5 ± 2.24 a-d 51.6 ± 3.25 a-d 8.9 ± 0.59 a-c 6.5 ± 0.46 b-d

5 ppm ZnONPs prec 25.7 ± 2.51 a 57.9 ± 3.97 ab 10.1 ± 0.70 a 6.9 ± 0.43 a-c

15 ppm ZnONPs prec 14.6 ± 1.57 de 44.0 ± 2.99 de 8.0 ± 0.52 a-c 5.7 ± 0.38 de

5 ppm AgNPs enc 20.3 ± 2.09 a-d 52.3 ± 3.13 a-d 9.5 ± 0.69 ab 6.9 ± 0.41 a-c

15 ppm AgNPs enc 20.6 ± 2.66 a-d 52.3 ± 3.52 a-d 8.9 ± 0.56 a-c 6.9 ± 0.57 a-c

5 ppm AuNPs enc 25.4 ± 2.63 a 59.4 ± 3.83 a 9.9 ± 0.68 ab 8.1 ± 0.60 a

15 ppm AuNPs enc 23.0 ± 2.23 ab 56.4 ± 3.27 a-c 10.0 ± 0.63 a 7.5 ± 0.51 ab

5 ppm ZnONPs enc 19.6 ± 2.51 a-d 46.9 ± 4.26 b-e 7.7 ± 0.68 bc 6.4 ± 0.63 b-d

15 ppm ZnONPs enc 15.8 ± 2.11 c-e 45.1 ± 3.79 c-e 8.2 ± 0.74 a-c 5.7 ± 0.45 de

Valentine

control 18.3 ± 1.40 a-c 49.7 ± 2.23 a-c 9.5 ± 0.54 ab 6.5 ± 0.28 a-d

5 ppm AgNPs prec 19.6 ± 2.05 ab 48.4 ± 3.32 a-d 9.0 ± 0.63 a-c 6.4 ± 0.41 a-d

15 ppm AgNPs prec 10.6 ± 1.50 e 34.1 ± 3.31 e 6.8 ± 0.63 cd 4.3 ± 0.37 e

5 ppm AuNPs prec 14.6 ± 1.92 b-e 42.2 ± 3.31 b-e 7.9 ± 0.60 b-d 5.2 ± 0.33 c-e

15 ppm AuNPs prec 11.4 ± 1.32 de 35.5 ± 2.35 e 6.5 ± 0.47 d 5.0 ± 0.35 de

5 ppm ZnONPs prec 17.2 ± 1.69 b-d 47.1 ± 2.81 a-d 8.6 ± 0.56 b-d 6.6 ± 0.47 a-c

15 ppm ZnONPs prec 18.0 ± 2.36 a-c 48.9 ± 3.86 a-d 9.2 ± 0.66 ab 6.2 ± 0.47 a-d

5 ppm AgNPs enc 23.4 ± 1.30 a 57.6 ± 2.49 a 10.8 ± 0.55 a 7.6 ± 0.38 a

15 ppm AgNPs enc 16.6 ± 2.10 b-e 42.7 ± 4.00 b-e 8.1 ± 0.82 b-d 5.9 ± 0.58 b-d

5 ppm AuNPs enc 13.2 ± 1.92 c-e 38.5 ± 3.51 de 7.6 ± 0.72 b-d 5.0 ± 0.50 de

15 ppm AuNPs enc 14.8 ± 2.79 b-e 40.3 ± 5.07 c-e 7.5 ± 0.94 b-d 5.3 ± 0.59 c-e

5 ppm ZnONPs enc 20.5 ± 1.77 ab 52.8 ± 3.03 ab 9.3 ± 0.58 ab 7.4 ± 0.57 ab

15 ppm ZnONPs enc 20.8 ± 2.41 ab 51.2 ± 3.45 a-c 8.9 ± 0.63 a-c 7.3 ± 0.61 ab

Average width (cm) Aspect ratio Form coefficient

Treatment Gold Heart

control 2.0 ± 0.16 d 0.77 ± 0.06 a 0.11 ± 0.02 a

5 ppm AgNPs prec 3.6 ± 0.28 a 0.96 ± 0.07 a 0.09 ± 0.00 a

15 ppm AgNPs prec 2.9 ± 0.26 a-c 0.78 ± 0.06 a 0.09 ± 0.01 a

5 ppm AuNPs prec 3.0 ± 0.21 ab 0.84 ± 0.06 a 0.09 ± 0.00 a

15 ppm AuNPs prec 2.8 ± 0.18 b-d 0.76 ± 0.05 a 0.09 ± 0.01 a

5 ppm ZnONPs prec 3.0 ± 0.21 ab 0.71 ± 0.04 a 0.11 ± 0.02 a

15 ppm ZnONPs prec 2.2 ± 0.16 cd 0.80 ± 0.07 a 0.09 ± 0.00 a

5 ppm AgNPs enc 2.7 ± 0.18 bc 0.84 ± 0.10 a 0.09 ± 0.00 a

15 ppm AgNPs enc 2.9 ± 0.28 a-c 0.81 ± 0.05 a 0.09 ± 0.00 a

5 ppm AuNPs enc 3.3 ± 0.27 ab 0.91 ± 0.08 a 0.09 ± 0.00 a

15 ppm AuNPs enc 2.9 ± 0.18 a-c 0.81 ± 0.06 a 0.09 ± 0.00 a

5 ppm ZnONPs enc 2.9 ± 0.30 a-c 0.83 ± 0.07 a 0.10 ± 0.01 a

15 ppm ZnONPs enc 2.2 ± 0.18 cd 0.78 ± 0.07 a 0.09 ± 0.00 a

Valentine

control 2.4 ± 0.17 a-d 0.74 ± 0.05 a 0.09 ± 0.00 b

5 ppm AgNPs prec 2.6 ± 0.20 a-c 0.75 ± 0.05 a 0.10 ± 0.01 ab

15 ppm AgNPs prec 1.7 ± 0.12 e 0.68 ± 0.04 a 0.12 ± 0.01 a

(Continued)
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Table 2. (Continued)

5 ppm AuNPs prec 2.2 ± 0.17 b-e 0.70 ± 0.04 a 0.10 ± 0.00 ab

15 ppm AuNPs prec 2.1 ± 0.16 c-e 0.83 ± 0.06 a 0.11 ± 0.01 ab

5 ppm ZnONPs prec 2.5 ± 0.22 a-d 0.82 ± 0.07 a 0.09 ± 0.00 b

15 ppm ZnONPs prec 2.3 ± 0.23 a-e 0.68 ± 0.06 a 0.10 ± 0.01 ab

5 ppm AgNPs enc 2.9 ± 0.20 a 0.79 ± 0.07 a 0.09 ± 0.00 b

15 ppm AgNPs enc 2.3 ± 0.23 a-e 0.84 ± 0.08 a 0.12 ± 0.01 a

5 ppm AuNPs enc 1.9 ± 0.20 de 0.72 ± 0.07 a 0.10 ± 0.01 ab

15 ppm AuNPs enc 2.1 ± 0.27 c-e 0.79 ± 0.10 a 0.10 ± 0.01 ab

5 ppm ZnONPs enc 2.7 ± 0.18 a-c 0.86 ± 0.08 a 0.09 ± 0.00 b

15 ppm ZnONPs enc 2.8 ± 0.28 ab 0.87 ± 0.08 a 0.09 ± 0.00 b

* Each number represents the mean value ± standard error. Significant differences in values are determined by Duncan’s post hoc test (P<0.05). Values with at least one

same letter are not statistically different.

https://doi.org/10.1371/journal.pone.0310424.t002

Table 3. Effect of silver (AgNPs), gold (AuNPs), and zinc oxide (ZnONPs) nanoparticles applied during the preculture (prec) or encapsulation (enc) step of the

encapsulation-vitrification cryopreservation protocol on the relative content of flavonoids, anthocyanins, chlorophyll (CCI) and Leaf Soil-Plant Analysis Develop-

ment (SPAD) value in the leaves after 70 days of ex vitro growth in Lamprocapnos spectabilis ‘Gold Heart’ and ‘Valentine’.

Flavonoids Anthocyanins CCI SPAD

Treatment Gold Heart

control 0.26 ± 0.03 a 0.19 ± 0.02 ab 3.5 ± 0.52 c 13.8 ± 1.76 cd

5 ppm AgNPs prec 0.22 ± 0.04 ab 0.21 ± 0.02 ab 2.8 ± 0.22 c 11.4 ± 1.36 d

15 ppm AgNPs prec 0.22 ± 0.03 ab 0.22 ± 0.02 a 3.7 ± 0.33 c 15.8 ± 1.30 cd

5 ppm AuNPs prec 0.22 ± 0.02 ab 0.22 ± 0.03 a 2.9 ± 0.25 c 12.4 ± 1.23 cd

15 ppm AuNPs prec 0.30 ± 0.04 a 0.20 ± 0.02 ab 3.5 ± 0.26 c 15.2 ± 1.12 cd

5 ppm ZnONPs prec 0.09 ± 0.02 cd 0.06 ± 0.01 de 8.3 ± 0.81 b 27.4 ± 1.88 b

15 ppm ZnONPs prec 0.05 ± 0.01 d 0.02 ± 0.00 e 12.2 ± 0.71 a 35.8 ± 1.00 a

5 ppm AgNPs enc 0.15 ± 0.02 bc 0.11 ± 0.02 cd 3.2 ± 0.37 c 13.0 ± 1.97 cd

15 ppm AgNPs enc 0.25 ± 0.02 a 0.15 ± 0.02 bc 3.8 ± 0.30 c 16.0 ± 1.43 cd

5 ppm AuNPs enc 0.22 ± 0.02 ab 0.20 ± 0.02 ab 3.7 ± 0.30 c 15.8 ± 1.40 cd

15 ppm AuNPs enc 0.24 ± 0.03 a 0.19 ± 0.03 ab 4.0 ± 0.38 c 17.3 ± 1.43 c

5 ppm ZnONPs enc 0.29 ± 0.03 a 0.25 ± 0.02 ab 3.2 ± 0.28 c 13.7 ± 1.41 cd

15 ppm ZnONPs enc 0.25 ± 0.02 a 0.21 ± 0.02 ab 3.2 ± 0.22 c 14.2 ± 1.02 cd

Valentine

control 0.06 ± 0.01 a-c 0.020 ± 0.00 d 10.4 ± 1.24 a-c 31.7 ± 2.37 ab

5 ppm AgNPs prec 0.06 ± 0.01 a-c 0.051 ± 0.01 ab 7.9 ± 0.67 bc 26.6 ± 1.79 bc

15 ppm AgNPs prec 0.03 ± 0.00 c 0.021 ± 0.00 cd 12.2 ± 1.05 a 34.6 ± 2.39 a

5 ppm AuNPs prec 0.05 ± 0.01 a-c 0.027 ± 0.01 b-d 11.3 ± 3.16 ab 30.0 ± 2.45 a-c

15 ppm AuNPs prec 0.07 ± 0.01 a-c 0.051 ± 0.01 ab 7.0 ± 0.71 c 24.5 ± 2.08 c

5 ppm ZnONPs prec 0.06 ± 0.01 a-c 0.045 ± 0.01 a-c 9.1 ± 0.93 a-c 30.1 ± 1.84 a-c

15 ppm ZnONPs prec 0.04 ± 0.01 bc 0.028 ± 0.01 b-d 9.6 ± 0.51 a-c 31.8 ± 0.81 ab

5 ppm AgNPs enc 0.06 ± 0.01 a-c 0.030 ± 0.00 a-d 10.9 ± 1.10 a-c 32.4 ± 2.00 ab

15 ppm AgNPs enc 0.05 ± 0.01 a-c 0.037 ± 0.01 a-d 9.8 ± 0.83 a-c 31.8 ± 1.54 ab

5 ppm AuNPs enc 0.08 ± 0.01 a 0.053 ± 0.01 a 8.3 ± 0.83 a-c 28.5 ± 2.08 a-c

15 ppm AuNPs enc 0.07 ± 0.01 ab 0.031 ± 0.01 a-d 8.5 ± 0.67 a-c 29.0 ± 1.97 a-c

5 ppm ZnONPs enc 0.04 ± 0.01 bc 0.019 ± 0.00 d 10.2 ± 0.93 a-c 31.8 ± 1.97 ab

15 ppm ZnONPs enc 0.05 ± 0.01 a-c 0.025 ± 0.01 cd 11.0 ± 0.61 a-c 34.1 ± 0.89 a

* Each number represents the mean value ± standard error. Significant differences in values are determined by Duncan’s post hoc test (P<0.05). Values with at least one

same letter are not statistically different.

https://doi.org/10.1371/journal.pone.0310424.t003
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anthocyanins, whereas the addition of 15 ppm AgNPs into the alginate bead enhanced the syn-

thesis of chlorophyll compared to the control (Table 4).

On the other hand, 5 ppm AuNPs and AgNPs in the preculture medium and alginate bead,

respectively, stimulated the production of flavonoids and anthocyanins in the stems of L. spect-
abilis ‘Valentine’. Moreover, the concentration of anthocyanins was increased by the presence

of 15 ppm ZnONPs in the preculture medium compared to the untreated control (Table 4).

No effect of the applied nanoparticles was found in terms of chlorophyll content in this

cultivar.

The application of ZnONPs during the preculture step increased the chlorophyll fluores-

cence parameters (F0, Fv, and Fm) in ‘Gold Heart’ cultivar, although the Fv/Fm and Fv/F0 val-

ues remained unchanged compared to the control. Also in ‘Valentine’ the presence of 15 ppm

ZnONPs in the preculture medium increased the initial and maximal chlorophyll fluorescence

but the Fv/Fm and Fv/F0 values were the same in all experimental treatments (Table 5).

Table 4. Effect of silver (AgNPs), gold (AuNPs), and zinc oxide (ZnONPs) nanoparticles applied during the preculture (prec) or encapsulation (enc) step of the

encapsulation-vitrification cryopreservation protocol on the relative content of flavonoids, anthocyanins, and chlorophyll (CCI) in the stems after 70 days of ex
vitro growth in Lamprocapnos spectabilis ‘Gold Heart’ and ‘Valentine’.

Flavonoids Anthocyanins CCI

Treatment Gold Heart

control 0.39 ± 0.06 cd 0.33 ± 0.09 e 0.94 ± 0.02 b

5 ppm AgNPs prec 0.42 ± 0.08 cd 0.57 ± 0.12 b-d 1.07 ± 0.02 b

15 ppm AgNPs prec 0.37 ± 0.07 cd 0.66 ± 0.08 bc 0.98 ± 0.04 b

5 ppm AuNPs prec 0.63 ± 0.11 ab 0.89 ± 0.06 a 0.94 ± 0.07 b

15 ppm AuNPs prec 0.68 ± 0.07 a 0.78 ± 0.04 ab 0.93 ± 0.04 b

5 ppm ZnONPs prec 0.23 ± 0.04 d 0.45 ± 0.02 c-e 1.01 ± 0.03 b

15 ppm ZnONPs prec 0.21 ± 0.04 d 0.33 ± 0.04 e 0.95 ± 0.02 b

5 ppm AgNPs enc 0.24 ± 0.09 d 0.40 ± 0.10 de 1.00 ± 0.09 b

15 ppm AgNPs enc 0.30 ± 0.09 cd 0.38 ± 0.08 de 1.39 ± 0.35 a

5 ppm AuNPs enc 0.33 ± 0.03 cd 0.39 ± 0.06 de 1.11 ± 0.09 ab

15 ppm AuNPs enc 0.48 ± 0.08 bc 0.66 ± 0.08 bc 0.92 ± 0.05 b

5 ppm ZnONPs enc 0.42 ± 0.06 cd 0.60 ± 0.08 b-d 0.98 ± 0.07 b

15 ppm ZnONPs enc 0.38 ± 0.08 cd 0.53 ± 0.07 c-e 0.94 ± 0.02 b

Valentine

control 0.13 ± 0.03 cd 0.25 ± 0.05 de 0.99 ± 0.05 a

5 ppm AgNPs prec 0.23 ± 0.03 a-d 0.40 ± 0.04 b-e 1.03 ± 0.05 a

15 ppm AgNPs prec 0.26 ± 0.04 a-c 0.41 ± 0.03 b-e 0.95 ± 0.04 a

5 ppm AuNPs prec 0.31 ± 0.03 ab 0.48 ± 0.01 b 0.90 ± 0.05 a

15 ppm AuNPs prec 0.23 ± 0.05 a-d 0.42 ± 0.04 b-d 0.93 ± 0.03 a

5 ppm ZnONPs prec 0.28 ± 0.04 a-c 0.44 ± 0.04 bc 0.85 ± 0.04 a

15 ppm ZnONPs prec 0.21 ± 0.03 a-d 0.48 ± 0.02 b 0.97 ± 0.05 a

5 ppm AgNPs enc 0.34 ± 0.09 a 0.64 ± 0.10 a 0.99 ± 0.03 a

15 ppm AgNPs enc 0.19 ± 0.04 a-d 0.33 ± 0.07 b-e 0.98 ± 0.04 a

5 ppm AuNPs enc 0.18 ± 0.05 b-d 0.29 ± 0.08 c-e 1.04 ± 0.05 a

15 ppm AuNPs enc 0.14 ± 0.04 cd 0.26 ± 0.06 c-e 0.98 ± 0.03 a

5 ppm ZnONPs enc 0.20 ± 0.04 a-d 0.24 ± 0.05 e 0.97 ± 0.02 a

15 ppm ZnONPs enc 0.09 ± 0.02 d 0.29 ± 0.03 c-e 1.02 ± 0.03 a

* Each number represents the mean value ± standard error. Significant differences in values are determined by Duncan’s post hoc test (P<0.05). Values with at least one

same letter are not statistically different.

https://doi.org/10.1371/journal.pone.0310424.t004
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Effect of nanoparticles on the nuclear DNA content in LN-derived plants

Supplementation of the preculture medium with 15 ppm ZnONPs increased the nuclear DNA

content in the ‘Gold Heart’ plants (mean 1.327 pg) compared to all other treatments and the

control (1.296–1.3131 pg) (Fig 1). As for the ‘Valentine’ cultivar, two specimens from the treat-

ments 5 and 15 ppm AuNPs in the preculture medium, had a significantly different DNA con-

tent than the remaining samples. One of these specimens displayed a notably reduced DNA

content (1.254 pg), whereas the other exhibited an elevated DNA content (1.741 pg; Fig 2).

Discussion

Nanoparticles, with their small size and unique properties, offer novel solutions to some of the

longstanding challenges in cryobiology. In this study, we focused on nanoparticle-assisted

Table 5. Effect of silver (AgNPs), gold (AuNPs), and zinc oxide (ZnONPs) nanoparticles applied during the preculture (prec) or encapsulation (enc) step of the

encapsulation-vitrification cryopreservation protocol on the chlorophyll fluorescence parameters and ratios in the leaves after 70 days of ex vitro growth in Lampro-
capnos spectabilis ‘Gold Heart’ and ‘Valentine’.

F0 Fv Fm Fv/Fm Fv/F0

Treatment Gold Heart

control 108.0 ± 9.6 c 492.5 ± 45.7 c 600.5 ± 52.8 c 0.82 ± 0.01 ab 4.6 ± 0.29 a-c

5 ppm AgNPs prec 99.8 ± 11.6 c 448.3 ± 46.5 c 548.0 ± 58.0 c 0.82 ± 0.00 ab 4.5 ± 0.07 a-c

15 ppm AgNPs prec 122.7 ± 18.7 c 537.5 ± 75.5 c 660.2 ± 92.7 c 0.81 ± 0.01 ab 4.4 ± 0.27 a-c

5 ppm AuNPs prec 82.8 ± 14.1 c 353.0 ± 56.1 c 435.8 ± 68.0 c 0.81 ± 0.01 ab 4.4 ± 0.36 a-c

15 ppm AuNPs prec 89.0 ± 8.8 c 405.1 ± 45.4 c 494.1 ± 53.3 c 0.82 ± 0.01 ab 4.6 ± 0.27 a-c

5 ppm ZnONPs prec 206.1 ± 20.8 b 783.3 ± 66.4 b 989.4 ± 84.9 b 0.79 ± 0.01 b 3.9 ± 0.28 c

15 ppm ZnONPs prec 286.8 ± 12.2 a 1112.8 ± 68.9 a 1399.5 ± 76.0 a 0.79 ± 0.01 b 3.9 ± 0.22 c

5 ppm AgNPs enc 140.3 ± 32.5 c 577.5 ± 115.2 c 717.8 ± 147.4 c 0.81 ± 0.01 ab 4.3 ± 0.20 bc

15 ppm AgNPs enc 124.2 ± 25.1 c 533.2 ± 80.4 c 657.4 ± 105.2 c 0.82 ± 0.01 ab 4.5 ± 0.23 a-c

5 ppm AuNPs enc 96.3 ± 12.5 c 487.4 ± 62.3 c 583.7 ± 74.7 c 0.83 ± 0.00 a 5.1 ± 0.13 ab

15 ppm AuNPs enc 87.3 ± 11.8 c 450.0 ± 53.1 c 537.3 ± 64.8 c 0.84 ± 0.00 a 5.2 ± 0.18 a

5 ppm ZnONPs enc 102.8 ± 16.7 c 443.5 ± 34.0 c 546.3 ± 49.8 c 0.82 ± 0.01 ab 4.6 ± 0.40 a-c

15 ppm ZnONPs enc 82.0 ± 9.2 c 361.9 ± 42.8 c 443.9 ± 51.2 c 0.81 ± 0.01 ab 4.4 ± 0.21 a-c

Valentine

control 230.1 ± 13.9 bc 797.0 ± 65.9 ab 1027.1 ± 79.0 bc 0.77 ± 0.01 a 3.4 ± 0.15 a

5 ppm AgNPs prec 264.6 ± 18.9 b 843.7 ± 40.0 ab 1108.2 ± 58.0 a-c 0.76 ± 0.01 a 3.2 ± 0.12 a

15 ppm AgNPs prec 256.5 ± 12.1 b 959.7 ± 53.4 a 1216.2 ± 65.1 ab 0.79 ± 0.00 a 3.7 ± 0.07 a

5 ppm AuNPs prec 224.0 ± 23.7 bc 732.3 ± 81.8 b 956.3 ± 103.9 c 0.76 ± 0.01 a 3.3 ± 0.15 a

15 ppm AuNPs prec 247.9 ± 8.2 bc 818.5 ± 20.6 ab 1066.4 ± 25.2 a-c 0.77 ± 0.01 a 3.3 ± 0.11 a

5 ppm ZnONPs prec 278.7 ± 12.6 ab 955.8 ± 52.7 a 1234.5 ± 60.2 ab 0.77 ± 0.01 a 3.4 ± 0.17 a

15 ppm ZnONPs prec 328.7 ± 20.6 a 938.3 ± 53.5 a 1267.0 ± 67.1 a 0.74 ± 0.01 a 2.9 ± 0.15 a

5 ppm AgNPs enc 244.0 ± 13.1 bc 782.1 ± 43.3 ab 1026.1 ± 47.0 bc 0.76 ± 0.01 a 3.3 ± 0.23 a

15 ppm AgNPs enc 239.5 ± 25.2 bc 732.0 ± 44.1 b 971.5 ± 52.1 c 0.75 ± 0.02 a 3.2 ± 0.35 a

5 ppm AuNPs enc 192.0 ± 34.1 c 680.0 ± 114.3 b 872.0 ± 147.5 c 0.78 ± 0.01 a 3.6 ± 0.15 a

15 ppm AuNPs enc 282.4 ± 23.0 ab 803.8 ± 64.4 ab 1086.2 ± 82.7 a-c 0.74 ± 0.01 a 2.9 ± 0.17 a

5 ppm ZnONPs enc 251.3 ± 9.3 b 804.0 ± 47.6 ab 1055.3 ± 47.3 a-c 0.76 ± 0.01 a 3.2 ± 0.22 a

15 ppm ZnONPs enc 233.3 ± 6.8 bc 771.3 ± 40.5 ab 1004.6 ± 36.8 bc 0.76 ± 0.01 a 3.3 ± 0.23 a

* Each number represents the mean value ± standard error. Significant differences in values are determined by Duncan’s post hoc test (P<0.05). Values with at least one

same letter are not statistically different.

https://doi.org/10.1371/journal.pone.0310424.t005
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Fig 1. Effect of silver (AgNPs), gold (AuNPs), and zinc oxide (ZnONPs) nanoparticles applied during the preculture

(prec) or encapsulation (enc) step of the encapsulation-vitrification cryopreservation protocol on the DNA content

in the shoots of ex vitro-grown Lamprocapnos spectabilis ‘Gold Heart’ and ‘Valentine’.

https://doi.org/10.1371/journal.pone.0310424.g001
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cryopreservation, to explore the multifaceted ways in which nanoparticles can improve the

preservation of plant specimens.

Effect of nanoparticles on the survival and biometric parameters of

L. spectabilis plants ex vitro
The use of NPs in agriculture and horticulture can be considered a double-edged sword. It is

known that nanoparticles can benefit or harm plants, based on NPs type, concentration and

exposure time [43]. The lack of impact on the survival and leaf number in L. spectabilis ’Gold

Heart’ during acclimatization may indicate a higher tolerance of this cultivar to the tested

nanoparticles. On the other hand, the significant increase in shoot length when supplement-

ing alginate with 5 ppm AuNPs suggests a potential positive role of gold nanoparticles in pro-

moting shoot elongation. Likewise, gold-nanoparticle enhanced the growth and seed yield of

Brassica juncea (L.) Czern. [44]. Differential transcriptomic and proteomic analyses in Arabi-
dopsis demonstrated a downregulation in oxidative stress responses while growth-promoting

genes/proteins were upregulated as a result of AuNPs treatment [32], which coincides with

our observations. The growth-stimulating properties of nanoparticles could also explain why

most of the treatments (usually except for ZnONPs) had a positive effect on the leaf develop-

ment in the ‘Gold Heart’ cultivar. Silica nanoparticles (SiNPs) also had beneficial effects on

the growth of leaves and stems in wheat (Triticum aestivum L.) [45]. Nanoparticles can stimu-

late foliar growth and development partly by regulating the metabolisms and synthesis of

plant hormones [46]. The observed acceleration in plant growth is highly beneficial and con-

firms the utility of nanoparticles in the cryopreservation of this cultivar. Since the best results

were obtained with a concentration of 5 ppm NPs, it is recommended to use lower doses of

nanoparticles when supplementing the preculture medium or alginate beads. This is in agree-

ment with the findings of other authors, who also described that lower concentrations of gold

nanoparticles (10 ppm) had a positive effect on the survival of LN-derived shoot tips in L.

spectabilis [20].

L. spectabilis ’Valentine’ exhibited a more varied response in the present study. The stimula-

tion of shoot elongation with 5 ppm AgNPs or 5 ppm ZnONPs in the alginate bead matrix sug-

gests that these NPs might have growth-promoting effects in this cultivar. Nanoparticles

regulate phytohormone biosynthesis and signaling in plants [47]. They can be used as carrier

Fig 2. Example FCM histograms of fluorescence intensity of propidium iodide in the nuclei of Lamprocapnos spectabilis ‘Valentine’ plants: A–

control; B– 5 ppm AuNPs in the preculture medium; C– 15 ppm AuNPs in the preculture medium. The peaks of the internal standard (Solanum
lycopersicum ´Stupicke’) are indicated with an asterisk (*).

https://doi.org/10.1371/journal.pone.0310424.g002
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systems of auxins and gibberellins [48], which could explain the observed here results. On the

other hand, the adverse impact on the acclimatization efficiency with 15 ppm ZnONPs in the

preculture medium could be indicative of increased sensitivity to this particular nanoparticle

concentration. Cytotoxic effects of NPs have been reported in several plant studies [49].

ZnONPs exhibited phytotoxic effects on soybean plantlets at elevated concentrations [50].

Copper oxide nanoparticles (CuONPs), in general, had a positive or neutral effect on root and

shoot growth by enhancing photosynthesis and nutrient uptake in several monocots and

dicots. However, high concentrations of CuONPs caused oxidative stress and damage to plant

cells, resulting in reduced growth and yield [43]. Likewise, in L. spectabilis ’Valentine’, the

presence of a higher concentration of silver and gold nanoparticles in the preculture medium

resulted in the development of smaller leaves. In contrast, a tendency with 5 ppm AgNPs in

the alginate bead matrix suggests a potential positive influence on foliar growth.

The observed varied effects of NPs on L. spectabilis ’Gold Heart’ and ’Valentine’ can be

attributed to the distinct characteristics and responses of each cultivar to the nanoparticle

treatments. Not many studies though focus on the effect of various types of nanoparticles on

different plant cultivars. Nevertheless, seed priming using selenium nanoparticles (SeNPs)

resulted in varied chemical and biological properties of three Brassica oleracea cultivars [51].

Likewise, the application of AgNPs did not affect the germination efficiency; however, diverse

results were reported for the growth and biochemical activity in the seedling of three vegetable

species: Solanum lycopersicum L., Raphanus sativus L. var. sativus and Brassica oleracea var.

sabellica [52].

Effect of nanoparticles on the physiological state of L. spectabilis plants

Nanoparticle treatments altered the physiological response of LN-derived specimens. NPs are

known to affect the biochemical profile of plants [53]. Surprisingly, in the present study, this

effect depended not only on the cultivar but also on the plant organ (different responses of

leaves and stems). This phenomenon can be explained as leaves and stems serve different func-

tions in plants and have distinct metabolic activities. Moreover, it is known that nanoparticles

can accumulate in plants although the mechanism of such accumulation and the route of the

movement of nanoparticles in various organs have not yet been fully explained [54]. According

to previous research, the same kind of nanoparticle differs in translocation and accumulation

in different plant species but also within the same plant [55, 56]. The obtained here results sug-

gest that the specific mechanisms of nanoparticle-plant interaction are complex and may

involve interactions at the genetic, enzymatic, and signaling levels.

The differences in chlorophyll fluorescence and photosynthetic apparatus activity further

highlight the specificity of the nanoparticle effects. Leaf Soil-Plant Analysis Development

(SPAD) prediction is a crucial measure of plant health. SPAD value is correlated with the

amount of nitrogen (an important plant nutrient) present in the leaf [57]. A higher SPAD

value indicates a healthier plant. Therefore, it can be assumed that the utilization of ZnONPs

in the cryopreservation procedure may be highly beneficial. This hypothesis is supported by

the accompanying increased activity of PSII and decline in anthocyanin content as anthocya-

nins are considered an oxidative stress marker [58].

Most metallic nanoparticles are harmful to the photosynthetic apparatus by causing both

structural and functional damage and disrupting redox homeostasis in cells [59]. On the other

hand, it was found that TiO2NPs may enhance the efficiency of photosynthesis. In the present

study, no negative impact of nanoparticles on the stress indicators (Fv/Fm and F0/Fv) was

found compared to the control, confirming the utility of NPs in cryobiology research. It is

worth noticing that in the ‘Gold Heart’ plants, the Fv/Fm values were in the range of 0.79–
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0.84, which is the optimal value for most plant species [60]. However, in ‘Valentine’ only the

plants from the treatment 15 ppm AgNPs in the preculture medium reached the “safe” 0.79

value. All other combinations, including the control, were in the range of 0.74–0.78 indicating

that this cultivar is generally more stress-susceptible than ‘Gold Heart’. The reason why the

former cultivar is less stress-tolerant could be attributed to the lower concentration of plant

pigments (flavonoids and anthocyanins), which play a significant function in the plant’s

defense mechanism [58]. This could also explain why some of the treatments with higher con-

centrations of NPs caused a decline in the acclimatization efficiency (60% survival) of ‘Valen-

tine’ plants.

Effect of nanoparticles on the cytogenetic events in L. spectabilis plants

Cryopreservation is considered an ideal strategy for the long-term preservation of plant germ-

plasm, particularly in terms of maintaining its genetic stability [22]. Usually, the 2C DNA con-

tent and ploidy level of cryopreserved plants are the same as in the untreated control [61],

although sometimes cryostorage may affect the cell cycle. According to the previous research,

cell nuclei after cryopreservation are mainly in the G1/G0 phase (DNA content at the 2C

level), whereas fewer cells are in the G2 phase [62], which corresponds with the results

obtained in the current research. Nonetheless, nanoparticles may affect the DNA synthesis in

the plant cells. Due to their small size, NPs are easily absorbed by the cell, even penetrating the

caryolemma, and interacting directly or indirectly with DNA or the mechanisms of its synthe-

sis, methylation, reparation etc. [63]. Nanoparticles can cause various types of structural chro-

mosomal aberrations, such as incorrect orientation at metaphase, chromosomal breakage,

metaphasic plate distortion, spindle dysfunction, stickiness, aberrant movement at metaphase,

fragmentation, scattering, unequal separation, chromosomal gaps, multipolar anaphase, ero-

sion, as well as distributed and lagging chromosomes, micronuclei induction, and decrease the

value of the mitotic index [64, 65].

In the present study, it was found that one of the ‘Valentine’ specimens obtained from the

experimental treatment 5 ppm AuNPs in the preculture medium contained significantly less

DNA (1.254 pg) than the remaining plants from the same treatment (1.324 pg). This can be

explained by the findings of other authors, who claim that NPs may inhibit DNA replication

by binding to DNA [66]. On the other hand, another specimen from the treatment 15 ppm

AuNPs in the preculture medium contained a much higher nuclear DNA content (1.741 pg).

This could result from an altered mitotic index and explain why gold nanoparticles stimulated

the growth of L. spectabilis in vitro when added to the culture medium at higher concentration

[67]. A similar phenomenon was reported with cadmium nanoparticles (CdNPs) and Eruca
sativa Mill. [68], as well as silver nanoparticles and Allium plants [69]. Nonetheless, one should

keep in mind that the severity of NPs-induced abnormalities depends on the type, concentra-

tion, exposition time and particle size [70]. This could explain why a higher (15 ppm) concen-

tration of bigger (13 nm) ZnONPs caused more evident changes in the DNA content of ‘Gold

Heart’ plants (1.327 pg) when added at the preculture step for an entire week before cryopres-

ervation compared to the smaller (6 nm) gold or silver nanoparticles or even ZnONPs that

were used at lower doses (5 ppm) or added into the alginate bead matrix directly before LN-

storage (1.296–1.313 pg). Zinc has a structural function in proteins that are involved in DNA

replication [71] and stimulates DNA synthesis [72]. The observed increase in DNA synthesis

and nuclear activity could explain the elevation of chlorophyll content and SPAD index value

in leaves. Further chromosome analyses, e.g. fluorescence in situ hybridization (FISH), would

be necessary to detect the precise mechanism of NPs action. Nonetheless, the observed differ-

ence in DNA content is, in most cases, very small (~0.03 pg 2C-1) and does not affect the ploidy
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level of the plants. Minor changes in the number of chromosomes of LN-derived

Fragaria × ananasa Duchesne plants were observed by [73], while [74] detected genome size

changes (at the level ~0.01 pg 2C-1) in cryopreserved somatic embryos of Quercus suber L. that

were all considered irrelevant.

Conclusions

The interdisciplinary fusion of nanotechnology and cryobiology holds great promise for

addressing global challenges in biodiversity security and sustainability. In this study, the utility

of nanoparticles in the cryopreservation of L. spectabilis was verified.

The study revealed that the influence of nanoparticles on plant responses is rather complex.

L. spectabilis ’Gold Heart’ exhibited a generally positive response, with nanoparticles enhanc-

ing plant survival, shoot length, and leaf development. The varied effects observed in ’Valen-

tine’ cultivar, such as stimulation of shoot elongation with specific nanoparticle treatments,

suggest that cultivars respond differently to the same nanoparticle treatment. Physiologically,

nanoparticles affected the biochemical profile, chlorophyll fluorescence, and photosynthetic

apparatus activity. The intricate responses observed in leaves and stems further emphasized

the diverse impacts of nanoparticles on different plant organs. Nonetheless, the study suggests

that nanoparticles may regulate plant growth and development by influencing its metabolisms.

With minimal changes in DNA content observed, the present study highlights the need for fur-

ther exploration into the long-term effects of nanoparticle exposure on genetic stability in

cryopreserved plants.

Supporting information

S1 Fig. Post-cryostorage recovery and ex vitro growth of Lamprocapnos spectabilis ‘Valen-

tine’. A–developing shoot breaking the alginate capsule; B–in vitro-recovered plantlets; C–

acclimatization in a multipot; D–vegetative growth of plants in a glasshouse; E–measurement

of pigment content in leaves; F–flowering plant with no signs of phenotype variation.

(JPG)
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