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Abstract 

The paper presents an approach for modelling of the size effect in the high-cycle fatigue for an additively 

manufactured stainless steel. The analyses verify the probability of a critical defect, significantly speeding up 

fatigue crack initiation. An assessment of the fracture surface failure mechanism shows the presence of a void due 

to lack of fusion. The selected defect parameters significantly decrease the fatigue strength with increasing 

specimen length. The implemented linear model of the normalized Crossland stress provides a good fit to the 

experimental data. The probabilistic approach to the scatter of the selected variables shows the correct prediction 

of fatigue properties. 
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Nomenclature 

√𝑎𝑟𝑒𝑎  Murakami defect size parameter 

√𝑎𝑟𝑒𝑎0  material constant of Murakami parameter 

µ0 normal distribution size parameter 

dl defect type parameter 

F axial force 

HV Vickers hardness 

J1,max  max. hydrostatic stress over a loading cycle 

J2,a amplitudes of a second invariant of a deviatoric stress tensor over a loading cycle 

Kt theoretical stress concentration factor 

ls  overall specimen length 

lw length of specimen working part 

m, b linear regression coefficients 
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n number of specimens 

n% highly stressed parameter 

nd number of defects 

Nf number of cycles to failure 

P probability 

Pf failure probability 

R stress ratio 

R2 determination coefficient 

Rf radius of fillet 

Sf fatigue strength 

Sf,est estimated fatigue strength 

Sf,n normalized fatigue strength 

Sf,pred predicted fatigue strength 

Smax maximum normal stress 

tb min. thickness between a specimen outer surface and defect 

td max. thickness between a specimen outer surface and defect 

Vn% highly stressed volume 

α Weibull distribution shape parameter 

α0 significance level of a confidence interval 

αCR, βCR material parameters of the Crosslands criterion 

αM exponent of the Murakami model 

β0 - β5 non-linear regression coefficients 

δ Weibull distribution scale parameter 

δp relative error 

ΔSf fatigue strength range 

ΔSf,0 upper limit of fatigue strength range 

λ Weibull distribution location parameter 

ρd defect density 

σ0 normal distribution shape parameter 

σCR Crossland equivalent stress 



 

 

σCR,n normalized Crossland equivalent stress 

σmax max. normal stress 

σw fatigue strength at a knee point of fully reversed tension/compression 

τw fatigue strength at a knee point of fully reversed torsion 

1. Introduction 

The fatigue failure tests are generally carried out on a selected object size, resulting in limited assessment and 

extrapolation of data beyond the experimental test conditions. The physical difficulties of testing objects at full 

scale, and the technical and financial constraints, necessitate the testing of small size specimens. Transferring 

experimental data to a full scale structure requires determination of the size effect on fatigue properties. Commonly 

used recommendations and guidelines contain empirical relationships based on correcting factors [1-3]. 

The size effect prediction models are categorised according to the factors selected [4]. The statistical approach 

assumes a random material defect independent of the object size [5]. The increase in the number of defects causing 

fatigue crack initiation and propagation is proportional to the object size, decreasing the fatigue strength. The 

weakest link theory defines statistically located defects in a unit of material [6]. The crack initiates in a limited 

volume containing a critical defect or the weakest link in the material. The local failure probability is related to 

the global failure probability of the structure. An increase in the size effects determines an increase in the data 

scatter, described by the location parameter of the Weibull distribution [7]. 

The effect of inhomogeneous stress distribution and specimen size on fatigue properties is modelled 

deterministically using a volumetric model. The geometric approach related to the stress gradient is noted under 

loading conditions of bending or torsion and axial loading of discontinuous geometrically notched objects. The 

model defines a highly stressed volume [8, 9] or surface [10-12]. The probability of crack initiation or enlargement 

of an existing defect in this region is higher. The local volume or surface is loaded with at least n% of the maximum 

stress. The combination of this model with the weakest link theory provides a prediction of probabilistic scatter 

bands [13]. 

The fatigue life for a constant stress range is random. Therefore, a correct analysis of this phenomenon requires 

the implementation of a probabilistic model without arbitrary assumptions about its functional form [14]. A 

parametric function using statistical assumptions determines the modelling for the failure probability distribution 

of the selected random variable. The asymptotic function for implementing the variable lower limit assumption is 

the Weibull distribution [6, 15]. The methods based on a strictly statistical approach do not accurately represent 

the fatigue failure mechanism [16]. The probabilistic modelling of the phenomenon requires linking a random 



 

 

variable for a selected statistical distribution to a defined measure of material failure, as presented in the papers 

[17, 18]. 

The paper presents an attempt to model the size effect from experimental observations of selected random 

variables affecting the fatigue behaviour of a selective laser melted 316L stainless steel. The applied 

generalisations and simplifications of the procedures for predicting fatigue properties are the result of considering 

significant factors on the analysed phenomenon, including modelling limitations not resulting from the 

assumptions of the implemented approaches. The material defect formed during additive manufacturing 

determines the failure mechanism. The probabilistic approach defines the defect parameter in a highly stressed 

volume according to the weakest link theory. The output data is the fatigue strength related to the failure 

probability. The result for a variable specimen size is predicted using extreme value statistics and the Kitagawa-

Takahashi diagram to approximate the fatigue strength. The specimens are disproportionately modified in relation 

to the geometric dimensions of the reference specimen. The analysed dimensional relationship is observed in 

objects of variable length [19, 20]. 

2. Experimental methods 

2.1. Material 

The material tested is additive manufactured 316L stainless steel. The powder was produced by atomising the 

material in an argon atmosphere. The grain size of the powder was analysed using a scanning electron microscope 

(Fig. 1). The material consists of spherical grains. The average size is 44.8 µm. The general chemical composition 

has been summarised as a percentage by weight: 0.03 C; 1.00 Si; 2.00 Mn; 0.03 S; 0.04 P; 16-18 Cr; 10-14 Ni; 2-

3 Mo. 

The specimens were manufactured by laser powder bed fusion (PBF-LB) technology using a selective laser 

melting process. The three-dimensional models of the specimens in STL format were used to prepare a laser scan 

path with a power of 200 W, a scan speed of 800 mm/s, a hatching pitch of 0.12 mm and a layer thickness of 0.03 

mm. The additive manufacturing was carried out on the SLM 125HL machine under argon gas shielding. The 

powder melt path was non-unidirectional oriented stress. The constant manufacturing parameters were used for all 

specimens. There was no further heat treatment applied. Fig. 2 shows an example view of the specimens on the 

build plate. The geometry of the fatigue test specimens is given in Section 2.2. 



 

 

 

Fig. 1. SEM image of powder made from 316L stainless steel. 

 

Fig. 2. Selected view of specimens on the build plate of the SLM 125HL machine. 

The microstructure of the as-built material was analysed in a plane perpendicular (x-z) to the build plate. This 

plane, built up layer by layer during additive manufacturing, contains the thermal history of the process. The final 

surface of the specimen was polished and etched in an acetic glyceregia. Fig. 3a shows an example of an optical 

micrograph of a polished surface. The pointed black areas represent pores. The visible material defects are 

characterised by irregular shape and variable size. The porosity is not uniform. The additive manufacturing process 

of the PBF-LB 316L stainless steel causes randomly distributed pores. A few clusters of smaller pores and larger 

defects can be observed under the top layer of the material. The selected subsurface defects can generate a stress 

state that significantly affects fatigue crack initiation [21]. A detailed analyses are provided in Section 3.2. 



 

 

 

 

Fig. 3. Optical micrographs of the PBF-LB 316L stainless steel in the plane perpendicular (x-z) to the build plate: 

a) polished material showing porosity, b) as-built, etched material. 

Fig. 3b shows an optical microscopic analysis of a selected area of the etched surface. The clearly visible 

boundaries of the melt pools represent the solidification pattern during the PBF-LB process, along the heat gradient 

from the edge to the core. The pointed pores define the insufficient overlap of the melt pools, resulting in a lack 

of fusion between the layers. The observed microstructural inhomogeneity may be due to process inaccuracies, 

non-uniformity of the melt pool, impurities, inclusions and spatter. The elongated shape of the grains is oriented 

along the build direction (z-axis) through the boundaries of the melt pools. The epitaxial solidification of layers 

along the thermal gradient result in columnar, vertical grains. The microstructures identified are features 

commonly found in the selective laser melted 316L stainless steel [22-24]. 

The mechanical properties were determined by a static tensile test according to ISO 6892 [25] using a flat 

smooth specimen (length of working part – 15 mm, thickness – 2 mm, minimum width – 4 mm, radius of fillet – 

12 mm). The specimens were additively manufactured along the z-axis. The working part at the specimen thickness 



 

 

was machined due to the removal of supports. The constant machining parameters were applied to both 

symmetrical specimen surfaces. There was no additional surface finish applied. All experimental tests were carried 

out on an Instron 8874 materials testing machine, equipped with a ± 25 kN force gauge and an Instron 2620 

dynamic extensometer with a 12.5 mm gauge length and ± 5 mm strain. The average measured values and standard 

deviation for the three specimens are a modulus of elasticity of 168 ± 4 GPa, a tensile strength of 637 ± 4 MPa, a 

yield strength of 502 ± 8 MPa, and a longitudinal elongation of 35.4 ± 3.0%. 

2.2. Fatigue tests conditions 

The experimental test programme determines the effect of specimen length on the failure probability for the 

fatigue strength distribution of the PBF-LB 316L steel. The range of the controlled stress state in the specimen is 

based on uniaxial high-cycle fatigue testing. The fatigue tests are carried out in accordance with ISO 1099 [26] 

and ISO 12107 [27]. A sinusoidal tensile loading (R = 0.01) was applied to prevent buckling of low stiffness 

specimens. For the assumed frequency of 20 Hz, there was no significant increase in the specimen temperature. 

The final criterion for the fatigue test was a continuous crack, in the plane normal to the load axis. The fatigue 

tests were carried out on the same machine as the static tensile test. The identified parameters were used as 

constants in the test programme. The statistical size effect studies require minimising the influence of other factors 

that significantly affect the output of the experimental tests. 

Fig. 4 shows the geometry of smooth specimens, varying in the length of the working part. The defined variable 

lw was used as an input parameter to the test programme. The method of dimension change determines non-

proportional scaling. Table 1 shows the dimensions of the specimen geometries. The machining was identical to 

the static tensile test specimens. The theoretical stress concentration factor (Kt) is constant for the selected group 

of specimens (L05, L20, L50). For specimen L00, the Kt factor is equal to 1.08. The dimensional relationships 

used have a negligible effect on the result. Therefore, the data have not been corrected. The specimens were tested 

to a maximum cyclic normal stress (Smax) of 450 MPa. The applied load determined a fatigue life not greater than 

the number of cycles for the assumed knee point of the fatigue curve (5·105 cycles [28]). The output of the test 

programme was the fatigue life for the selected stress level. 

 
Fig. 4. Geometry of the unnotched stress controlled fatigue test specimens made of the PBF-LB 316L stainless 

steel. 



 

 

Table 1. Specimen dimensions for variable length. 

Specimen 

number 

Dimension [mm] Number of 

specimens, n lw ls Rf 

L00 0 35 12 10 

L05 5 60 50 10 

L20 20 80 50 10 

L50 50 110 50 10 

3. Results and discussion 

3.1. High-cycle fatigue 

The fatigue failure process is a non-deterministic phenomenon, usually described by a probabilistic model 

based on a Weibull distribution. The resulting failure probability represents the relationship between the stress 

level of a fatigue cycle and the number of cycles to failure. The parameters of the Weibull distribution are estimated 

using the maximum likelihood method. The cumulative failure probability can be determined using a three-

parameter Weibull distribution, according to the equation [6]: 

𝑃𝑓(𝑁𝑓 , 𝑆𝑓) = 1 − exp [− (
(𝑁𝑓 , 𝑆𝑓) − 𝜆 

𝛿
)

𝛼

] (1) 

where Nf is the number of cycles to failure, Sf is the fatigue strength, α is the shape parameter, δ is the scale 

parameter, λ is the location parameter. 

Fig. 5 shows experimental results for selected failure probabilities. The diameter of the points determines the 

measured size of the critical defect. The parameter √𝑎𝑟𝑒𝑎 is defined as the square root of the defect area projected 

onto a plane perpendicular to the applied maximum principal stress. The detailed data are presented in Sections 

3.2, 3.3. The solid line is the cumulative distribution function (CDF) for the variable failure probability (Pf). The 

location of the vertical dashed lines for Pf of 50% shows a decrease in fatigue life with increasing specimen length. 

The observed size effect significantly affects the results. The defect size correlates with the fatigue properties. An 

increase in defect size decreases fatigue life. 

A useful engineering design approach is the implementation of fatigue strength based calculation methods. The 

implemented procedure uses a constant linear regression slope coefficient (mexp) of the experimental fatigue curve 

for a fully reversed cycle. The fatigue tests for a R ratio of -1 were carried out on a high stiffness specimen (L00). 

Fig. 6 shows the results for a variable R ratio. A regression model for Pf of 50% (solid line) was used to estimate 

the fatigue strength (Sf,est) for variable length specimens. The coefficient best was calculated using the experimental 

fatigue life (R = 0.01), a constant stress level (Smax) and a coefficient mexp (R = -1). The fatigue strength (Sf,est) was 

estimated for 5·105 cycles and coefficients mexp, best. The output as a function of the failure probability is considered 

for further analysis. 



 

 

 

Fig. 5. Cumulative Weibull distribution function for experimental data of variable length specimens. 

 

Fig. 6. Experimental high-cycle fatigue data for variable R ratio. 

Table 2. Results of Weibull distribution for experimental fatigue life (R = 0.01) and estimated fatigue strength 

range (R = -1). 

Specimen 

number 

Weibull distribution (logNf) 
Pf [%] 

Nf [cycle] 

Smax = 450 MPa, R = 0.01 

ΔSf,est [MPa], 

R = -1 λ α δ 

L00 4.84 9.67 0.48 

10 166 085 453 

50 200 582 469 

90 230 938 481 

L05 4.75 4.53 0.49 

10 110 512 420 

50 157 554 448 

90 216 163 475 

L20 4.72 4.14 0.49 

10 101 164 413 

50 147 791 443 

90 209 478 472 

L50 4.59 2.47 0.49 

10 60 852 376 

50 101 843 415 

90 186 380 462 



 

 

Table 2 shows the parameters of the Weibull distribution Eq. (1) for the logarithmic number of cycles to failure. 

The shape parameter (α) increases as the specimen length decreases. The correlation determines the decrease in 

fatigue strength scatter for the smaller specimen. The location parameter (λ) follows the trend of fatigue properties 

as a function of specimen size. The behaviour of the material is consistent with theoretical assumptions [21]. The 

relationship between the size effect and the failure probability is observed. An increase in the Pf variable correlates 

with a decrease in the size effect on the fatigue properties of the PBF-LB 316L steel. 

3.2. Crack initiation 

The fractographic analysis was used to assess the failure mechanism of the PBF-LB 316L steel. The specimens 

were observed using a JEOL 6480LV scanning electron microscope in the secondary electron mode with an 

accelerating voltage of 20kV. Fig. 7 and Fig. 8 show examples of fracture surfaces in a plane perpendicular to the 

y-axis loading direction. The views are defined on the same scale. All cracks initiated from a one site. The 

specimens L05, L20, L50 failed at the smallest width. A critical defect, defined as a defect on the fracture surface 

that initiates the main crack, was identified for each specimen. The boundary between the defect and the fracture 

surface is marked by a closed curve (dashed line). The defect size (√𝑎𝑟𝑒𝑎) was measured using image analysis 

software. The observed defects are characterised by a deep area, resulting from a lack of fusion of subsequent 

material layers, containing multiple unmelted powder grains and pool inhomogeneities (Fig. 7a-d). The process of 

defect formation determines the inaccuracy of additive manufacturing, according to the microstructure analysis 

(Section 2.1). The initiation site was identified by characteristic river pattern on the flat transgranular crack plane. 

The smaller defects located on the fracture surface joined the main crack propagation path. For the smallest 

specimens, a few flat areas of crack initiation were observed due to microstructural effects of the steel matrix (Fig. 

7e), caused by cyclic plastic strain. 

The measured defect sizes correlate with the fatigue properties of the PBF-LB 316L steel. An increase in the 

parameter √𝑎𝑟𝑒𝑎 determines a decrease in fatigue life. Fig. 7a shows the largest critical defect detected in the 

experimental data population. Subsequent views show selected defects located in the subsurface volume. All 

cracks were initiated in the surface region after machining. The variable width to length ratios of the defects do 

not suggest a significant effect on fatigue life. Two types of defects were observed, surface (Fig. 7) and subsurface 

(Fig. 8). A subsurface defect defines the lack of connection between the defect boundary (dashed line) and the 

outer surface of the specimen. Belonging to a defined defect type determines the implementation of the statistical 

size effect model described in Section 3.4.2. The crack initiation observed is a common failure mechanism in 

additively manufactured materials [29-34]. 



 

 

The analysis of defects in the material structure (Fig. 3) identified the location of large internal pores at a 

significant distance from the outer surface (over 200 µm). An assessment of the fracture surface does not reveal 

any such defects. All detected fatigue crack initiating defects are located in the subsurface volume. These defects 

determine higher cyclic plastic strains than the internal defect, while speeding up the crack initiation [35]. A 

subsurface defect increases the failure probability than an internal defect because it has a smaller propagation area 

towards the open surface [36]. An internal crack growing in a vacuum determines a lower propagation rate than a 

surface crack [37], as confirmed by the non-detection failure for a high applied stress level [38]. A surface defect 

close to the surface shows faster crack initiation than a surface defect [21]. The applied uniaxial cyclic loading 

generates a multiaxial stress state in the bridge zone of the material between the defect and the outer surface [39]. 

A small subsurface defect may be more critical than a surface defect. The location of critical defects is consistent 

with a highly stressed volume of 90%σmax (Section 3.4.1). 

  

   

Fig. 7. Fracture surface in the area of the surface critical defect initiating the fatigue crack, specimen: a) L50_02 – 

Nf = 51 895, b) L50_07 – Nf = 130 283, c) L20_06 – Nf = 162 698, d) L05_10 – Nf = 227 987, e) L00_07 – Nf = 

213 306. 



 

 

   

Fig. 8. Fracture surface in the area of the subsurface critical defect initiating the fatigue crack, specimen: 

a) L50_03 – Nf = 74 804, b) L05_08 – Nf = 205 835, c) L00_09 – Nf = 218 167. 

3.3. Defect size 

The analyses assume that the size and location of a single defect are the main variables controlling the failure 

of the PBF-LB 316L steel. This random variable is described by a log-normal distribution. The parameter √𝑎𝑟𝑒𝑎 

was determined for the marked defect boundary shown in Fig. 7 and Fig. 8. The range of values obtained for all 

specimens is from 53 µm to 437 µm. Table 3 shows all the data. Fig. 9 shows the measured sizes of surface defects 

(solid points) and subsurface defects (empty points). The parameter √𝑎𝑟𝑒𝑎 is related to the specimen length (lw). 

The solid line corresponds to the mean value. The data increases non-linearly with the defined size. 

Table 3. Compilation of experimental and estimated data for the PBF-LB 316L stainless steel. 

Specimen 

number 

Nf [cycle], 

Smax = 450 MPa, 

R = 0.01 

ΔSf,est [MPa], 

R = -1 √𝑎𝑟𝑒𝑎 [µm] Defect type Form of defect 

L50_01 48 587 413 397 surface void 

L50_02 51 895 433 437 surface void 

L50_03 74 804 461 293 subsurface void 

L50_04 100 384 432 312 subsurface void 

L50_05 118 304 450 188 surface void 

L50_06 128 028 361 224 subsurface void 

L50_07 130 283 444 218 surface void 

L50_08 150 080 391 139 surface matrix 

L50_09 160 603 425 125 surface void 

L50_10 182 324 365 103 surface void 

L20_01 85 375 400 268 subsurface void 

L20_02 98 988 465 352 surface void 

L20_03 106 289 451 230 surface void 

L20_04 136 345 472 205 surface void 

L20_05 162 545 471 173 subsurface void 

L20_06 162 698 451 191 surface void 

L20_07 163 218 451 99 surface matrix 

L20_08 192 180 437 173 subsurface void 

L20_09 206 834 412 106 surface void 

L20_10 208 462 417 99 surface void 

L05_01 111 462 431 205 surface void 

L05_02 122 051 474 251 surface void 

L05_03 122 316 471 225 surface void 

L05_04 127 479 480 195 surface void 



 

 

L05_05 129 658 428 211 subsurface void 

L05_06 167 975 454 170 surface void 

L05_07 178 235 428 175 subsurface void 

L05_08 205 835 459 128 subsurface void 

L05_09 214 122 433 104 surface void 

L05_10 227 987 421 95 surface void 

L00_01 156 105 448 191 subsurface void 

L00_02 157 495 474 134 surface void 

L00_03 186 934 486 168 surface void 

L00_04 189 007 471 112 surface void 

L00_05 205 305 448 69 surface void 

L00_06 207 146 464 159 subsurface void 

L00_07 213 306 476 76 surface matrix 

L00_08 214 797 475 101 subsurface void 

L00_09 218 167 463 89 subsurface void 

L00_10 242 983 472 53 surface matrix 

 
Fig. 9. Defect size as a function of the variable length specimen. 

The defect size that determines fatigue strength is the critical defect initiating failure in a uniform cyclic stress 

field. The correlation between fatigue strength and critical defect size is shown in the Kitagawa-Takahashi diagram 

[40]. The original form defines the relationship between the "fatigue limit" and the propagating fracture state 

according to linear elastic fracture mechanics. A practical use of the diagram for materials with defects requires 

the crack length to be replaced by the parameter √𝑎𝑟𝑒𝑎. The results of analyses consistent with this approach are 

presented in the papers [41-45]. The diagram was plotted for the range of estimated fatigue strength (ΔSf,est), 

calculated from the experimental fatigue life (Nf) for a constant level of cyclic maximum stress. 

The correlation between defect size and fatigue strength is defined by the empirical Murakami criterion. The 

approach uses √𝑎𝑟𝑒𝑎 as the geometric parameter and Vickers hardness as the material parameter. The fatigue 

strength for varying mean stress is determined from the equation [21]: 

𝑆𝑓(√𝑎𝑟𝑒𝑎, 𝐻𝑉, 𝑅) =
𝑑𝑙  (𝐻𝑉 + 120)

√𝑎𝑟𝑒𝑎
1/6

(
1 − 𝑅

2
)

𝛼𝑀

 (2) 



 

 

𝛼𝑀(𝐻𝑉) = 0,226 + 𝐻𝑉 ∙ 10 −4 (3) 

where dl is the defect type (surface defect – 1,43; subsurface defect – 1.41), R is the stress ratio and HV is the 

Vickers hardness. Below the threshold fatigue strength calculated from the equation, the failure does not occur. 

The initiated crack does not propagate to a critical size. The defect is treated as a crack correlating with fatigue 

strength. If the defect is smaller than the critical size then the fatigue strength depends on the microstructural 

properties defined by hardness. 

The implementation of Eq. (2) is valid for the experimentally determined upper limit, below which the decrease 

in fatigue strength is noticeable. The occurrence of a plateau is determined by the characteristics of the material 

structure, including the ability to propagate microcrack through microstructural barriers to macrocrack. The full 

range of the crack initiating defect size is described by the El-Haddad model [46], which assumes a smooth 

transition from a short to a long crack. In the original form of the equation, a fictitious crack length was 

implemented. This constant for materials with defects corresponds to the parameter √𝑎𝑟𝑒𝑎0. The region below 

this value represents the range of long crack propagation based on linear elastic fracture mechanics. The modified 

El-Haddad model takes the form: 

∆𝑆𝑓(√𝑎𝑟𝑒𝑎) = ∆𝑆𝑓,0√
√𝑎𝑟𝑒𝑎0

√𝑎𝑟𝑒𝑎0 + √𝑎𝑟𝑒𝑎
 (4) 

where √𝑎𝑟𝑒𝑎0 is the material constant of the Murakami parameter, ΔSf,0 is the upper limit of fatigue strength range. 

The approximation of the experimental data using the Murakami model, Eq. (2) and El-Haddad, Eq. (4) in its 

original form provides a deterministic result. A proposed modification to the selected approaches is the definition 

of a probabilistic measure. The input parameters of the models that best fit the data were obtained by the least 

squares method. The variation of fatigue strength was described by a probabilistic model using a three-parameter 

Weibull distribution function. Fig. 10a shows the distribution for the normalized fatigue strength range calculated 

from the ratio of the data estimated from Eqs. (2), (4) and the mean. The points show the confidence interval (α0 

= 0.05). The variation in the location of these limits is noticeable. 

The prediction results of the Murakami model were obtained for all input data and defects above the assumed 

size. The analysis was carried out to determine the critical defect size limit that significantly affects the fatigue 

strength decrease. A good fit was obtained for data above a parameter √𝑎𝑟𝑒𝑎 of 100 µm. The coefficient of 

determination (R2) increased from 0.693 to 0.812 after removing the data below this limit. The defect size below 

this value disturbs the linearity of the model and significantly increases the confidence interval limits of the 

Weibull distribution. The exclusion of defects below a defined size determines the process of fatigue crack 



 

 

initiation and propagation. An attempt to explain this phenomenon is provided by the theory of critical distance 

[47, 48]. The failure is determined by exceeding the average stress in the volume around the peak value generated 

by the defect. A small defect of less than 100 µm generates a large local stress gradient and low average stress in 

a defined volume. The local stress state does not speed up fatigue crack initiation. The process is determined by 

the microstructural characteristics of the material. 

Fig. 10b and c show the estimation results of the analysed models for variable specimen length. Each point is 

the defect size in relation to the estimated fatigue strength range (ΔSf,est) using a regression model with a R ratio of 

-1 and 5·105 cycles (Table 3). The material shows sensitivity of fatigue properties as a function of defect size. The 

dashed lines represent the confidence interval limits (α0 = 0.05). The defect size above the lower limit determines 

the fatigue failure. The Murakami model with a 1:6 slope of lines was limited in the upper fatigue strength (for the 

mean – 482 MPa). The coefficient dl depending on the defect type (surface, subsurface) was considered. The El-

Haddad model shows asymptotic behaviour for ΔSf,0 (for the mean – 517 MPa). All measured defect sizes are 

below the threshold value √𝑎𝑟𝑒𝑎0 of 486 µm. Fig. 10d shows selected log-normal distributions of defect size for 

specimens L00, L50. The points are the measured defect sizes in the defined specimen population. The vertical 

dashed line shows the defect size calculated for 50% probability (mean), 107 µm and 219 µm, for specimens L00 

and L50, respectively. The location of the log-normal distributions indicates an increase in defect size with 

specimen length. 

Table 4 summarises the approximation results of the models. A higher coefficient of determination (R2) points 

a better fit of the data estimated for the El-Haddad model. The Weibull distributions show a similar correlation, 

with a higher shape parameter (α) defining a lower data scatter. The observed scatter is a microstructural effect 

that determines fatigue crack initiation and propagation, a combination of the size, the defect localisation, the local 

residual stresses and the anisotropy of the material properties. The predicted fatigue strength (ΔSf,pred) for failure 

probabilities (Pf) of 10%, 50%, 90% was calculated using the log-normal distribution of the actual defect size for 

the selected specimen size (Fig. 10d). The relative error (δp) was calculated in relation to the experimental data in 

Table 2. The mean absolute percentage error for both models is similar at 1.4%. The implementation of models at 

the engineering design stage is unsafe. Both approaches overestimate the predicted data for the longest L50 

specimen. The relationship between fatigue strength and object size can be related to a measure of material failure 

using the statistical distribution of √𝑎𝑟𝑒𝑎.  The size effect of the material with defects can be modelled for a 

defined correlation of these variables using extreme value statistics. 



 

 

 

 

 

 
Fig. 10. Effect of critical defect on fatigue strength for a R ratio of -1 and 5·105 cycles: a) Weibull distributions for 

estimated data, b) Murakami model, c) El-Haddad model, d) log-normal distributions for defect size. 



 

 

Table 4. Fatigue strength prediction results using Murakami, El-Haddad model and defect size distribution for 

varying failure probability and specimen length. 

Model 
Parameters 

for mean 
R2 

Weibull dist. (ΔSf,n) ΔSf,pred [MPa] (δp [%]) 

λ α δ Pf [%] L00 L05 L20 L50 

Murakami, 

√𝑎𝑟𝑒𝑎 ≥ 100 µm, 

Eq. (2) 

HV = 243 0.812 0.93 2.61 35.9 

10 
436 

(-3.7) 

411 

(-1.9) 

412 

(-0.2) 

381 

(1.2) 

50 
477 

(1.7) 

439 

(-2.2) 

442 

(-0.3) 

423 

(2.0) 

90 
482 

(0.1) 

468 

(-1.6) 

475 

(0.5) 

469 

(1.7) 

El-Haddad, 

Eq. (4) 
√𝑎𝑟𝑒𝑎0 = 486 µm 

ΔSf,0 = 517 MPa 
0.849 0.93 2.85 33.4 

10 
441 

(-2.7) 

418 

(-0.4) 

419 

(1.3) 

381 

(1.1) 

50 
468 

(-0.2) 

443 

(-1.2) 

446 

(0.6) 

429 

(3.5) 

90 
487 

(1.2) 

463 

(-2.6) 

467 

(-1.1) 

464 

(0.6) 

3.4. Procedure for predicting size effect 

The prediction of the size effect on fatigue behaviour was implemented using a statistical approach. The 

probability of a defect decreasing the fatigue strength increases with material volume. Fig. 11 shows the modelling 

steps of the proposed procedure. The dashed areas indicate the input data. The size (√𝑎𝑟𝑒𝑎) and location (tb) 

parameters define the defect. Both variables are probabilistic measures, described by a distribution of random 

values. The defect location is identified by the highly stressed volume (Vn%). The number of defects (nd) is the 

result of the highly stressed volume and the defect density (ρd). The simulation of random defect distributions are 

generated depending on the parameters (Vn%, √𝑎𝑟𝑒𝑎, tb, ρd) for the selected population of numerical specimens 

until the nd variable is reached. The defect criticality defines the fatigue criterion for the nonlocal stress distribution 

in the defect. A population of critical defects is generated until the number of specimens (n) is reached. The fatigue 

strength (Sf,pred) described by a probabilistic scatter band is predicted from the extreme value statistics and the 

model describing the Kitagawa-Takahashi diagram. The implementation of this procedure for the selected 

variables provides output for an object of any size. 



 

 

 

Fig. 11. Schematic of the fatigue strength prediction procedure for a variable size object with material defects. 

3.4.1. Simulation of defect distribution 

The random defect generation procedure has been implemented for a numerical model with defined variables. 

Similar methods for modelling the defect distribution are reported in the papers [49, 50]. The analysed method 

locates the defect in a highly stressed volume (HSV). The size of the HSV was calculated numerically using the 

finite element method (FEA) with ANSYS software. The analyses have been carried out in the structural analysis 

module with fixed boundary conditions. The material is an isotropic linear elastic model. The CAD model 

geometry was identical to the fatigue specimen (Fig. 4, Table 1). The solid elements with 20 nodes and three 

degrees of freedom per node (SOLID186) were used. The results of the discretisation error analysis determined 

the size of the finite element mesh. Fig. 12a shows an example of a normal stress distribution map along the y-axis 

for specimen L05. The scale determines the n% parameter for HSV. A tensile loading F was applied to the top and 

bottom surfaces in the y-axis direction. 

Fig. 12b shows a visualisation of the defect distribution in HSV for n% of 90%. The value was determined 

empirically, according to the paper [39]. A parametric CAD model was created using a specially provided macro. 

The defects are represented as idealised, simplified spherical objects. Each defect was given a colour corresponding 

to the selected √𝑎𝑟𝑒𝑎 range according to the scale. The Monte Carlo method and the Mersenne Twister algorithm 

are used to generate the numerical specimens. The simulated defect location is determined by random values within 

the HSV limits. A random defect size is related to the generated location coordinates. The procedure is repeated 

until the number of defects (nd) is reached, according to the procedure scheme (Fig. 11). The model can be created 

for any defect distribution and specimen size. The modelling of all defects in a finite volume provides an 

assessment relative to other defects. Based on the fracture surface results in Section 3.2, the analysis is simplified 



 

 

to a single critical defect. The method was used to generate the numerical data described in Section 3.5. The critical 

defect identified is the correlation between the maximum defect size and the minimum distance from the outer 

surface of the specimen. A detailed analysis is presented in Section 3.4.2. 

 

 

Fig. 12. Visualization of defect distribution in highly stressed volume (L05): a) normal stress distribution map 

along the y-axis, b) example of defect distribution at V90% for a density ρd of 0.1%. 

The number of defects (nd) in a limited volume of material is determined by the defect density (ρd) as the ratio 

of the defect volume to the highly stressed volume for n%. The analyses were carried out for an assumed value of 

0.1%. A random defect size (√𝑎𝑟𝑒𝑎), following a log-normal distribution, is prescribed for the three-dimensional 

defect location. The defect location is determined by the random defect distance (tb) from the outer surface of the 

specimen. The defects are located in a subsurface volume of thickness td according to the fractographic analysis in 

Section 3.2. This parameter is defined as the maximum distance of the extreme critical defect point from the outer 

surface of the object. The dimension td is a material constant, independent of the specimen size. Table 5 summarises 



 

 

the numerically calculated HSV for each specimen size, including the constant td. This data was used for further 

analysis. 

Table 5. Numerical value of highly stressed volume 90%σmax for variable specimen length (td = const.). 

Specimen number L00 L05 L20 L50 

V90% [mm3] 7.9 63.5 138.5 288.5 

3.4.2. Defect criticality 

A quantitative measure of defect criticality is the equivalent stress, calculated using the Crossland multiaxial 

fatigue criterion [51] and analysed in other papers [52-54]. The criterion determines the effect of cyclic stress on 

fatigue failure, without defining the crack orientation [55]. The equation is shown below: 

𝜎𝐶𝑅 = √𝐽2,𝑎 + 𝛼𝐶𝑅  𝐽1,𝑚𝑎𝑥 ≤ 𝛽𝐶𝑅   (5) 

where J2,a is the amplitude of the second invariant of a deviatoric stress tensor, J1,max is the maximum hydrostatic 

stress, αCR and βCR are the material constants according to the equations: 

𝛼𝐶𝑅 =
3𝜏𝑤

𝜎𝑤

− √3 (6) 

𝛽𝐶𝑅 = 𝜏𝑤 (7) 

where σw is the fatigue strength at a knee point of fully reversed tension/compression, τw is the fatigue strength at 

a knee point of fully reversed torsion. The value of J2,a is determined by double maximisation over the loading 

cycle. The ratio of the Crossland stress (σCR) to the threshold parameter βCR defines the normalized equivalent 

stress (σCR,n). 

The sensitivity of the fatigue strength to defect location relative to the outer surface (tb) and the defect size 

(√𝑎𝑟𝑒𝑎) is estimated by a quadratic surface regression equation, as follows [39]: 

𝜎𝐶𝑅,𝑛 = 𝛽0 + 𝛽1√𝑎𝑟𝑒𝑎 + 𝛽2𝑡𝑏 + 𝛽3√𝑎𝑟𝑒𝑎𝑡𝑏 + 𝛽4√𝑎𝑟𝑒𝑎
2

+ 𝛽5𝑡𝑏
2  (8) 

where β0 is the intercept, β1 – β5 are the regression coefficients (1-α0 = 0.95). An extension of the concept of the 

Murakami model Eq. (2), instead of the defect type (dl), is the consideration of the defect location distance. The 

determination of the parameters in Eq. (8) required finite element analysis of representative element volume (RVE) 

modelling for the defined variables. The results showed an increase in the stress distribution components of the 

Crossland criterion for selected combinations of tb and √𝑎𝑟𝑒𝑎. The macroscopic stress gradient around the defect 

was considered by implementing a nonlocal method for a defined sphere. The details are provided in the paper 

[39]. Table 6 summarises the data for the second-order model. The analytical calculation of the stress σCR,n 

significantly reduces the time required compared to FEA. For the generated defect population in the numerical 

specimen, as shown in Fig. 12b, the criticality for each defect is calculated using Eq. (8). The proposed material 



 

 

definition depends on the defect parameters, the defect density and the size of the highly stressed volume, 

according to the procedure scheme (Fig. 11). 

Table 6. Coefficients of analytical model for output variable σCR,n [39]. 

Defect β0 β1 β2 β3 β4 β5 

Surface 0.7962 0.0018 - - - - 

Subsurface 0.8314 0.0026 -0.0054 -4.6664∙10-6 5.57∙10-8 3.4855∙10-5 

3.4.3. Verification of fatigue criterion 

The consideration of the stress state around the defect using the Crossland criterion has been implemented for 

two parameter combinations (Eq. (8)). Fig. 13a shows the Weibull distribution for the normalized fatigue strength 

range. The defect type was analysed as surface only (dashed line) and according to the actual location of the defect 

(solid line). The points defining the confidence interval (α0 = 0.05) indicate a significant difference in location. 

Fig. 13b shows the results of the linear regression model for the normalized Crossland stress and the estimated 

fatigue strength range (ΔSf,est) using a regression model with a R ratio of -1 and 5·105 cycles (Table 3). The points 

identify the actual defect location, which is important for the implementation of the analytical model (Eq. (8)). 

Most of the cracks were initiated by surface defects (solid points). The crack initiation from the matrix is a small 

percentage in relation to the voids and does not significantly affect the result. The model output is provided for 

defects above the parameter √𝑎𝑟𝑒𝑎 of 100 µm (σCR,n > 1). The coefficient of determination (R2) increased from 

0.867 to 0.904 after accounting for subsurface defects. In this population of experimental data, the consideration 

of subsurface defects significantly affects the model fit. Fig. 13c shows selected log-normal distributions of 

normalized Crossland stress for specimens L00 and L50. The points were calculated for the actual defect 

parameters using Eq. (8). For a 50% probability (mean), a stress of 1 and 1.24 was obtained for specimens L00 

and L50 respectively. The result for specimen L00 suggests the limits of the size effect on fatigue properties. 

Below this size, the effect of defects should be minor. 

Table 7 shows the results of the linear regression approximation for the normalized Crossland stress. The model 

input parameters calculated by the least squares method give a better fit to the output data than the Murakami 

model and the El-Haddad model. The R2 coefficient is higher. The predicted results have smaller relative errors 

(δp). The mean absolute percentage error is at 1.0%. An attempt to capture selected combinations of defect 

variables using the proposed calculation procedure is justified. An extension of the commonly used procedures for 

parameter √𝑎𝑟𝑒𝑎 could be to implement a failure measure definition using a nonlocal stress around the defect, 

taking into account the size and location of the defect. 



 

 

 

 

Fig. 13. Effect of critical defect on fatigue strength using Crossland criterion for a R ratio of -1 and 5·105 cycles: 

a) Weibull distributions for estimated data, b) linear model for normalized stress, c) log-normal distributions for 

normalized Crossland equivalent stress. 

Table 7. Fatigue strength prediction results using linear model for normalized stress and defect size distribution 

for varying failure probability and specimen length. 

Model 
Parameters 

for mean 
R2 

Weibull dist. (ΔSf,n) ΔSf,pred [MPa] (δp [%]) 

λ α δ Pf [%] L00 L05 L20 L50 

Reg. line CR 

ΔSf = m σCR,n + b 

m = -169.9 

b = 635.6 
0.904 0.93 2.15 21.3 

10 
447 

(-1.2) 

424 

(1.1) 

409 

(-1.1) 

373 

(-0.9) 

50 
466 

(-0.7) 

446 

(-0.5) 

444 

(0.2) 

425 

(2.4) 

90 
482 

(0.2) 

466 

(-1.9) 

474 

(0.5) 

466 

(1.0) 



 

 

3.5. Verification of size effect model 

The analyses of the correlation between fatigue strength and the critical defect size in the Kitagawa-Takahashi 

diagram (Section 3.3, 3.4.3) determine the data scatter of these two variables, described by the Weibull (Fig. 10a,  

Fig. 13a) and log-normal distributions (Fig. 10d), respectively. Fig. 14 shows the actual data scatter for the 

relationship between fatigue strength and failure probability. The location of the empty points on the abscissa axis 

is determined by the estimated fatigue strength using a data transfer procedure with a slope coefficient for fully 

reversed cycle results (Section 3). The values on the ordinate axis determine the predicted probability for the 

distribution of measured actual critical defect sizes for the selected specimen size (P for √𝑎𝑟𝑒𝑎 – Fig. 10d). The 

combination of these two variables defines a significant data scatter with respect to the cumulative distribution 

function (solid line) of the estimated data. The size effect modelling assumes a probabilistic representation of these 

two variables (ΔSf, √𝑎𝑟𝑒𝑎). The data significantly determine the output to the parameter of the input distributions. 

Both probabilistic measures are material constants, independent of object size. 

 

Fig. 14. Summary of estimated fatigue strength with experimental data scatter for variable length specimens. 

The critical defect parameters were simulated for a variable size of a highly stressed volume. The procedure 

determines a random defect size (√𝑎𝑟𝑒𝑎) following the input distribution and a random defect location (tb). The 

algorithm for generating these parameters is repeated until the number of specimens (n) is reached, according to 

the procedure scheme (Fig. 11). Fig. 15 shows the simulated defect size distribution for reduced variance and 

probability. The defect size was indexed as j = 1...n, where it corresponding to the number of numerical specimens 

of 100. Each point is a defined critical defect in a numerical specimen. The values are ordered from smallest to 

largest, as shown below: 



 

 

√𝑎𝑟𝑒𝑎1 ≤ √𝑎𝑟𝑒𝑎2 ≤ ⋯ ≤ √𝑎𝑟𝑒𝑎𝑛 (9) 

The defect size was analysed using extreme value statistics [15, 56]. The solid line is the output log-normal 

distribution for the generated data (empty points). The results required the input of a highly stressed volume 

dependent on the specimen length (Table 5) and a constant defect density (ρd). The location variability of each 

distribution is consistent with the experimental data (solid points). The average defect size (P = 50%) increases 

with the specimen size. 

 

Fig. 15. Comparison of extreme value distributions for simulated critical defect size in variable size of highly 

stressed volume. 

The second stage of probabilistic modelling determines the generation of random fatigue strength according to 

an estimated Weibull distribution. The input data are the results in Fig. 10a and Fig. 13a. For each critical defect 

(Fig. 15), the result was simulated using the Monte Carlo method within the confidence interval (α0 = 0.05) of the 

selected distribution. The output was calculated using the Murakami model (√𝑎𝑟𝑒𝑎 > 100µm), the El-Haddad 

model and the linear model for normalized stress. If the model allowed, the random defect location relative to the 

surface was considered. 

The material constants were determined by implementing an iterative algorithm. The data were fitted with a 

maximum relative error of 0.5%. The condition was achieved at an average defect density of 0.1%. This procedure 

was carried out for the smallest specimen size (L00). The purpose of geometry selection is to take advantage of 

miniature specimen testing, including limited material volume [57, 58]. The input parameters were fitted using the 

Crossland stress normalized linear regression. The model selection is determined by the smallest implementation 

error, as described in Section 3.4.3. The similarity between the experimental and generated values is the result of 

fitting the input log-normal distribution (µ0 = 2, σ0 = 1.3) to the output data. 



 

 

Fig. 16 shows the simulation results for specimens L00 and L50. Due to the large number of variables, the 

results are presented for selected data. An identical calculation procedure was carried out for the other specimen 

sizes and the models. The dashed lines show the confidence interval of the input Weibull distribution. The 

distribution location (Fig. 16a) determines the output for the randomly generated critical defect parameters. The 

input fatigue strength scatter is independent of the failure probability. The solid points are the experimental data, 

as shown in Fig. 14. The empty points are the simulated data from the proposed algorithm (Fig. 11) with the fatigue 

strength scatter. The probabilistic modelling of selected variables correctly simulates the relationship between size 

effect on fatigue strength and failure probability. The difference in Sf is smaller for higher values of Pf. The trend 

is consistent with the experimental results (Fig. 14). 

 

 
Fig. 16. Fatigue strength prediction results using linear model for normalized stress: a) input Weibull distribution, 

b) simulated random output and experimental data for specimens L00 and L50. 

Table 8. Fatigue strength prediction error for varying specimen length and failure probability. 

Model Murakami El-Haddad Reg. line CR 

Pf [%] 10 50 90 10 50 90 10 50 90 

Specimen 

number 

L05 3.5 2.2 1.1 1.5 1.7 1.8 0.6 0.4 1.0 

L20 6.8/4.7 5.0/2.9 3.0/1.1 3.3/1.8 3.3/1.8 3.2/1.7 2.2/0.8 2.1/0.5 2.0/1.0 

L50 1.3 2.8 4.2 0.9 1.2 3.0 0.6 0.4 0.8 

Average value 3.3/2.7 2.2/1.7 1.1/0.7 



 

 

 

 

 

Fig. 17. Summary of Weibull cumulative distribution function of experimental and predicted fatigue strength for 

a R ratio of -1 and 5·105 cycles, specimen: a) L05, b) L20, c) L50. 



 

 

The simulated random results were approximated by a Weibull distribution Eq. (1). The nine combinations of 

output data were obtained for three specimen sizes (L05, L20, L50) and three models. Table 8 shows the predicted 

fatigue strength for selected failure probabilities of 10%, 50%, 90% and the mean absolute percentage error. A 

simulation for the previously identified defect density and lower was performed for specimen L20. A subsequent 

analysis shows lower errors. The defect density has a significant effect on the output data. The best fit of the 

predicted data was obtained for the linear model for normalized stress for all specimen sizes. The average error 

including defect density correction for L20 is 2.7%, 1.7% and 0.7%, the Murakami model, the El-Haddad model 

and the regression line CR, respectively. Fig. 17 shows the cumulative distribution function for fatigue strength. 

The bold solid line is the estimated result for the experimental data (solid points). The thin solid and dashed lines 

are the output of the proposed probabilistic size effect model for all models. The results predicted using the linear 

model for normalized stress fit with the experimental results for probabilistic scatter bands. The Murakami and the 

El-Haddad models tend to underestimate the inputs. 

4. Conclusion 

The probabilistic size effect prediction of additively manufactured stainless steel attempts to identify a 

correlation between varying specimen length and fatigue strength. The direction of the studies determines the result 

of the failure mechanism analysis of the selected material defect parameters. The modelling of the phenomenon 

using analytical models has led to the following conclusions: 

- The relationship between the Weibull distribution of fatigue life for variable length specimens is noticeable. The 

experimental data scatter increases with specimen size. The size effect on the fatigue properties of the PBF-LB 

316L steel increases at lower failure probabilities. For a Pf of 10%, the estimated fatigue strength for the longest 

specimen (L50) decreased by 17% compared to the smallest specimen (L00). 

- The analysis of the fracture surface shows the fatigue crack initiation from a single defect located in the 

subsurface volume of the material. Most of the defects are irregularly shaped voids with deep areas resulting from 

a lack of fusion. The measured defect sizes (from 53 µm to 437 µm) correlate with the fatigue properties of the 

PBF-LB 316L steel. An increase in the parameter √𝑎𝑟𝑒𝑎 determines a decrease in the fatigue strength. 

- A defined correlation between actual defect size and fatigue strength showed that the El-Haddad model was a 

better fit than the Murakami model for defects larger than 100 µm. The verified normalized Crossland stress model 

for the nonlocal approach around the defect determines the criticality of the subsurface defect (35% of all cases) 

depending on the location. The approximate linear model provides a better fit to the data than other models. 



 

 

- The probabilistic approach to defect parameter scatter and the experimental data scatter resulted in the simulation 

of defined variables that significantly influenced the size effect prediction results. The random output of the 

proposed procedure was used to calculate the fatigue strength distributions using analytical models. The best fit of 

the predicted data was obtained for the linear model for normalized stress for all specimen sizes. The low error 

(less than 1%) shows the predictive validity of this model. This approach is characterised by the universality of 

the input variables for the defined failure measure and the fatigue properties prediction for any object size. 
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