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Abstract 

The paper presents modelling the effect of specimen size on the fatigue behaviour of SLM 316L stainless steel. 

The failure mechanism assumes an important role in fatigue crack initiated from random material defects. The 

finite element calculations showed an increase in the non-local stress distribution of the Crossland criterion for 

varying defect location and size. A procedure for generating critical defects in a highly stressed volume is proposed 

to simulate the distributions of extreme values of equivalent stress and material sensitivity coefficient for size 

effect. The predicted fatigue strength for selected defect size distribution parameters correlates well with 

experimental data. 
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Nomenclature 

√𝑎𝑟𝑒𝑎  Murakami defect size parameter 

µ normal distribution size parameter 

a crack depth 

A min. cross-sectional area of a specimen 

A0 min. cross-sectional area of a reference specimen 

af final crack depth 

ai initiated crack depth 

aij coefficients of a polynomial 

As longitudinal elongation 

Cp Paris law material constant 
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dl Murakami location of a defect 

E modulus of elasticity 

F axial force in a RVE model 

Fp function of geometry and a relative crack length 

HSV highly stressed volume 

HV Vickers hardness 

J1,max  max. hydrostatic stress over a load cycle 

J2,a amplitudes of the second invariant of a deviatoric stress tensor over a load cycle 

k,b linear regression coefficients 

Kt theoretical stress concentration factor 

L longitudinal elongation 

l  specimen edge 

lc distance of a crack from a specimen centre 

ls  overall specimen length 

mp Paris law exponent 

N  number of cycles 

n number of specimens 

n% highly stressed parameter 

nd number of defects 

Nf number of cycles to failure 

Ni number of cycles for initiation 

Np number of cycles for propagation 

ns size effect coefficient 

nsCR size effect coefficient for normalized Crossland stress 

P cumulative distribution function 

Pf failure probability 

R stress ratio 

R0.2 yield strength 

R2 determination coefficient 

Rf radius of fillet 
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Rm tensile strength 

𝑆̿ cyclic stress deviator tensor at two instantaneous times (tI, tJ) 

Sa stress amplitude 

Sf fatigue strength for knee point (Pf = 50%) 

Spred. predicted fatigue strength 

t specimen thickness 

tb min. thickness between a specimen outer surface and defect 

td max. thickness between a specimen outer surface and defect 

ti distance between defects 

Vd average defect volume 

w1 min. specimen width 

w2 width of a specimen grip section 

Z reduction of area 

α Weibull distribution shape parameter 

α0 significance level of a confidence interval 

αCR, βCR material parameters of the Crosslands criterion 

αM exponent of the Murakami equation 

β0 - β5 non-linear regression coefficients 

δ Weibull distribution scale parameter 

ΔK stress intensity factor range 

ΔKth long crack threshold stress intensity factor range 

ΔS stress range 

da/dN crack propagation rate 

λ Weibull distribution location parameter 

ρd defect distribution density 

σ normal distribution shape parameter 

𝜎̿ stress tensor 

σCR Crossland equivalent stress 

σCR,n normalized Crossland equivalent stress 

σCR,n max normalized Crossland equivalent stress for critical defect 
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σmax max. normal stress 

σn normal stress 

σw fatigue strength at a knee point of fully reversed tension/compression 

τw fatigue strength at a knee point of fully reversed torsion 

1. Introduction 

It is well known that the fatigue strength of a material depends on the size of the object. Most authors of 

experimental studies have confirmed that smaller specimens have higher strength, which is true on a macro scale. 

As the specimen size approaches the grain size, other failure mechanisms (plastic strain gradient, dislocation slip) 

can be observed, which introduce discrepancies between results for different scale ranges. The fatigue strength on 

a macro scale depends on categorised factors, including the random distribution of material defects (statistical size 

effect), the specimen shape and type of load (geometric size effect) and the technological processes used to 

manufacture the object (technological size effect) [1]. The origin of the size effect is the natural limitation of 

scaling all product properties to a constant level (e.g. material structure, defect distribution, surface layer). The 

scaling procedures used as defined by similarity theory assume a proportional change in the dimensions relevant 

to the process under analysis [2]. 

Regardless of the origin of the size effect, an important factor influencing the fatigue behaviour is the 

inhomogeneity of the structure manifested by the occurrence of random material defects distributed in the 

elementary unit of the material [3]. A common cause of failure of additively manufactured metallic materials is 

the formation of defects (pores, unmelted particles) [4-11]. The decrease in fatigue life of a larger specimen can 

be related to the defects size formed by the lack of fusion layers and incomplete bonding between melt pools. The 

resulting defects cause local discontinuities in the structure and stress concentrations causing local plastic 

deformation in the form of slip bands. The initiated crack propagates with the number of cycles. The resulting 

propagation region determines the length of the final crack depending on the stress amplitude [12, 13]. As a result, 

the fatigue failure process is a continuous phenomenon involving crack initiation and propagation. The evaluation 

of the size effect is carried out for each phase of failure. Due to the difficulty of determining the limit value of the 

initiation phase, the smallest crack depth at which linear elastic fracture mechanics (LEFM) can be applied is 

assumed [14]. In terms of the analyses conducted, most of the fatigue life is consumed by crack initiation [15, 16]. 

The size effect approaches depend the model on the failure mechanism determining the initiation phase. 

A commonly used model to assess the failure probability depending on size is the weakest link theory proposed 

by Weibull [17]. The assumption of the model is the presence of a critical defect in a statistical population of data. 
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The initiation and propagation of the crack in the different areas of the object is independent of each other. The 

location of a critical defect depends on the loading conditions and the geometry of the object, so methods are used 

to limit this area to a highly stressed volume [18]. The approach allows for the determination of a volume above 

an assumed percentage of maximum stress, characterised by a high probability of a critical defect. Therefore, HSV 

is combined with the Weibull model [19]. The critical defect detected in a given volume is analysed in the context 

of a defined specimen population. The resulting defect size distribution is described by extreme value statistics 

[20]. Another attempt to explain material heterogeneity involves modelling the size effect with a 'lacunar' fractal 

set. The material properties are estimated using renormalisation procedures for the fractal dimension of the 

damaged heterogeneous ligament or fracture surface [21]. The deterministic size effect models are most commonly 

used in engineering calculations, extrapolating test results from laboratory specimen sizes to the real object [22]. 

The paper proposes a size effect model for estimating the fatigue behaviour of SLM 316L stainless steel. The 

location of the P-S-N curves is estimated depending on the parameters of the defect size distribution in HSV. The 

failure mechanism assumes the presence of a defect and a local multi-axial stress state. The criticality of a defect 

is defined by the Crossland fatigue criterion [23] depending on the size and the location of the defect relative to 

the surface. Other factors such as the shape of the defect and its change under load also influence the stress 

distribution around the defect. Small deviations from the assumed geometry can significantly affect the stress 

concentration factor [3]. Due to the difficulty in accurately determining the parameters indicated, quantitative 

modelling of the stress distribution assumes the use of generally accepted simplifications. In an object volume 

subjected to time-varying load, the distributions of defects, cracks, changes in structure or local material properties 

are consistent with extreme value statistics [24]. Using a probabilistic approach for the material data taken, fatigue 

criteria and statistical methods it is possible to estimate the fatigue strength for a variable size. 

2. Experimental procedure 

2.1. Material 

The material tested is 316L stainless steel for additive manufacturing supplied as an atomized spherical powder. 

Fig. 1 shows the log-normal distribution of powder particle size. The confidence interval for the 0.05 significance 

level ranges from 28.2 µm to 64.1 µm. The average particle size is equal to 44.8 µm. The chemical composition 

of powder contains wt.% by mass: 0.03 C; 1.00 Si; 2.00 Mn; 0.03 S; 0.04 P; 16-18 Cr; 10-14 Ni; 2-3 Mo. 

The specimens were manufactured in selective laser melting using a SLM 125HL machine (SLM Solutions 

GmbH) under argon gas shielding. The powder melting and fusion was performed using a 200 W laser power, 

with a hatching pitch of 0.12 mm, scanning speed of 800 mm/s. The specimens were built with layers 0.03 mm 
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thick. The energy density of the parameters used was 69.4 J/mm3. The software created laser scan path determined 

non-unidirectional oriented stresses due to thermal contraction. An as-built heat treatment was not applied. All 

specimens were manufactured on a single build plate (Fig. 2). The manufacturing required the preparation of 3D 

models saved as stereolithographic objects in STL format. The necessity to generate support structures between 

the specimen and build plate determined the use of machining. The horizontal build orientation used was dictated 

by the most advantageous mechanical properties declared by the producer. The location of the specimens on the 

build plate determined to minimize the impact of splatter or subsequent layering. The details of the specimen 

geometries are provided in Section 2.2. 

 

Fig. 1. Log-normal distribution of SLM 316L stainless steel powder particle size. 

 

Fig. 2. Example view of horizontally oriented specimens on the build plate of the SLM 125HL machine. 

The identification of mechanical properties was performed in a static tensile test in accordance with the 

standard [25]. The dimensions of the specimens were in line with the fatigue test specimens (Fig. 4, Table 2), using 

a modification for a working part of length (15 mm). Fig. 3 shows engineering stress-strain curves for varying 
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specimen size. Table 1 summarizes the mean values calculated for the three specimens and the standard deviation. 

Due to the lack of a clear yield stress, the standard 0.2% offset was used. The tensile strain resulted in defined 

plasticity, followed by moderate strain hardening. The curve over the strain for the tensile strength determines a 

noticeable decrease in stress until failure. A strongly decrease in ductility tensile elongation is observed as the 

specimen size decreases. The values are 17.0% and 43.6% lower than the largest specimen (A32), respectively for 

A08, A02. Only the necking part of the stress-strain curve is dependent on the specimen dimensions. The 

phenomenon determines the mechanical effect, not the pure size effect under fatigue failure. A slight decrease in 

tensile strength and yield strength with the size is observed. 

 

Fig. 3. Engineering stress-strain curves of SLM 316L for various specimen size. 

Table 1. Mechanical properties of SLM 316L for various specimen size. 

Specimen 

number 

Min. cross-

sectional area, 

A [mm2] 

Modulus of 

elasticity, 

E [GPa] 

Tensile 

strength, 

Rm [MPa] 

Yield strength, 

R0.2 [MPa] 

Longitudinal 

elongation, 

L [%] 

A02 2 164 ± 5 634 ± 6 507 ± 5 24.0 ± 2.1 

A08 8 168 ± 4 637 ± 4 502 ± 8 35.4 ± 3.0 

A32 32 172 ± 5 641 ± 6 518 ± 9 42.6 ± 0.5 

2.2. Fatigue tests conditions 

The high-cycle fatigue tests under uniaxial, sinusoidal loading were carried out by standards [26, 27]. Fig. 4 

shows the geometry of a flat specimen with a variable working part used in fatigue tests. The experimental test 

programme involves verifying the size effect for varying specimen sizes. Table 2 contains the dimensions of the 

geometry. All specimens were additively manufactured in a single build plate. The working part across the width 

of the specimen was machined due to the necessity of removing the supports. The width of the minimum section 
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w1, thickness t, radius of the rounding Rf change proportionally. The theoretical stress concentration factor Kt is 

constant. The dimensional dependencies were used to eliminate the effect of other factors on the results. 

The tests were carried out for an symmetrical cycle (R = -1) and an average frequency of 20 Hz. The end 

criterion for the fatigue tests was the propagation of one continuous crack perpendicular to the load axis. The tests 

aimed to determine the P-S-N curves in terms of high-cycle fatigue for the load-controlled test. The upper load 

range was determined significantly below the experimentally determined lowest yield point. The lower test range 

for determining the knee point of the fatigue characteristic is assumed to be 5·105 cycles [28]. All experimental 

tests were performed on an Instron 8874 (Instron GmbH) materials testing machine with a ± 25 kN force gauge 

and a 2620 Instron dynamic extensometer with a 12.5 mm gauge base length and ± 5 mm extension. 

 

Fig. 4. Geometry of the unnotched stress-controlled fatigue test specimens made of SLM 316L stainless steel: 

a) dimensional drawing, b) actual view. 

Table 2. Specimen dimensions for variable size (Kt = const). 

Specimen 

number 

Dimension, [mm] Min. cross-

sectional area, A 

[mm2] 

Number of 

specimens, n w1 w2 t Rf ls 

A02 2 4 1 6 30 2 9 

A08 4 8 2 12 35 8 9 

A32 8 16 4 24 50 32 10 
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2.3. High-cycle fatigue results 

The classical approach of approximating experimental data for high-cycle fatigue assumes the determination 

of the S-N field. It is well known that the scatter of data for fatigue life is larger at lower stress amplitudes. The 

model implies discrepancies that determine parallel failure/survival probability curves. The extrapolation of the 

experimental data to any percentage curve is represented by the P-S-N curves. The experimental points are 

approximated using a probabilistic model based on a three-parameter Weibull cumulative distribution function for 

a chosen failure probability Pf, as follows [17]: 

𝑃𝑓(𝑁𝑓 , 𝑆𝑓) = 1 − exp [− (
(𝑁𝑓,𝑆𝑓)−𝜆 

𝛿
)

𝛼

]  (1) 

where Nf is the number of cycles to failure, Sf is the fatigue strength, α is the shape parameter, δ is the scale 

parameter, λ is the location parameter.  

a shows the approximated P-S-N curves in the bi-logarithmic system for a variable specimen size. The dashed 

and dotted lines correspond to the failure probability, 50%, 10% and 90% respectively. The vertical dashed line 

marks the number of cycles for the knee point of the curves. The location of the experimental points identifies the 

number of cycles Nf for the applied stress amplitude Sa. The diameter of the points determines the measured defect 

size (Murakami parameter √𝑎𝑟𝑒𝑎 [3]) of the fatigue crack initiation. The parameter is defined as the square root 

of the defect area projected onto a perpendicular plane to the applied maximum principal stress. A detailed analysis 

of the effect of selected defect parameters (size, location) is provided in Section 3. Fig. 5b shows the cumulative 

distribution function for 5·105 cycles. The points represent the estimated failure probability based on Weibull 

distribution. The size effect is independent of failure probability. The significant differences in the decrease in 

fatigue life with specimen size for the extreme Pf levels were not observed. Table 3 contains the estimated Weibull 

distribution parameters and the fatigue strength for the selected failure probability. The scale parameter δ increases 

with a decrease in the specimen size, which indicates obtaining higher fatigue life distributions for a smaller 

specimen.  A quantitative measure of a material's sensitivity to the size effect (coefficient ns) is the ratio of the 

fatigue strength for any specimen size Sf,A and a reference specimen Sf,A0. Due to the advantages of testing on 

miniature specimens [29], the reference fatigue strength distribution SA0 was determined for the specimen (A08). 

The selection of the reference size determines the no significant differences in fatigue strength for the smallest 

specimens. The coefficient ns (Table 3) is calculated for the same percentage curves corresponding to the number 

of cycles for the knee point. The coefficient ns decreases as the specimen size increases. The material behaviour is 

expected and consistent with theoretical assumptions. 
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Fig. 5. Experimental results of high-cycle fatigue tests for variable size specimens made of SLM 316L steel:              

a) P-S-N curves, b) Weibull cumulative distribution function for fatigue life 5·105 cycles. 

Table 3. Results of P-S-N curve approximation for fatigue life 5·105 cycles of a Weibull distribution. 

Specimen 

number 

Weibull distribution Failure 

probability, 

Pf [%] 

Fatigue 

strength, Sf 

[MPa] 

Size effect 

coefficient, 

ns = Sf,A/Sf,A0 

Location 

parameter, λ 

Shape 

parameter, α 

Scale 

parameter, δ 

A02 (A) 191.9 4.4 47.9 

10 220.6 1.014 

50 235.9 1.009 

90 249.8 1.008 

A08 (A0) 183.9 4.8 53.7 

10 217.5 

1 50 233.6 

90 247.7 

A32 (A) 131.4 8.8 92.9 

10 203.3 0.934 

50 220.5 0.943 

90 233.5 0.942 



 
 

11 

 

2.4. Fatigue initiation life 

The failure mechanism estimation of SLM 316L steel determining the location of the P-S-N curve was carried 

out for the crack initiation and propagation phases. The propagation rate of a long crack is characterized by Paris' 

Law. The fracture mechanics equations used require knowledge, in addition to stress and crack size, of the driving 

force of crack propagation. As a result, two material parameters are required: CP and mP. The stable crack growth 

phase defined by a linear elastic fracture mechanics model (LEFM) in the following form: 

𝑑𝑎

𝑑𝑁
= 𝐶𝑝(∆𝐾)𝑚𝑝   (2) 

where a is the crack depth, N is the number of cycles, Cp, mp are the material constant. The effective range of the 

stress intensity factor is determined from the equation [30]: 

∆𝐾 = 𝐹𝑝∆𝑆𝑓√𝜋𝑎  (3) 

where ΔSf is the stress range, Fp is the function of geometry and the relative crack length. The calculation of the 

fatigue life for the propagation phase implies integration of the equation from the initial to the final crack length, 

according to the equation: 

𝑁𝑝 = ∫
𝑑𝑎

𝐶(𝐹𝑝∆𝑆√𝜋𝑎)
𝑚

𝑎𝑓

𝑎𝑖
  (4) 

where Np is the crack propagation life, ai is the shortest crack length completing the initiation phase in LEFM, af 

is the final crack length representing the value for the brittle fracture region of the fracture surface. The fatigue life 

of the initiation phase (Ni) is calculated by subtracting the total number of cycles (Nf) from the value in Eq. (4). 

The value of ai is the limiting length between the crack initiation and propagation phases [31]. The exact 

determination of this value is difficult due to the correctness of defining the length of the crack ending the initiation 

phase [32]. The assumption of a too short crack can be a threat to the correct implementation of linear elastic 

fracture mechanics due to the local plasticity of the notch. For too long a crack, the deformation of the notch 

surface is not used for a large distance from the notch [30]. From an engineering point of view, the value of ai is 

assumed to be less than 1 mm [33]. The limit value is equal to the size of the defect [34] or 10 times the diameter 

equivalent to the maximum grain size [35]. 

The integration of the Eq. (4) was carried out for variable values of ai , af and constant material parameters 

(m = 3.37, C = 2.12·10-12 m/cycle/(MPa√m)m [36]). The data were used from crack growth curves for SLM 316L 

consistent with the specimen orientation. The model output value is significantly affected by the decrease in ai 

resulting in a longer number of cycles. The process of nucleation and crack growth to the initial crack length ai is 

slow. The propagation of short cracks is irregular. The cracks may be stopped at grain boundaries and other 

structural barriers of the material at relatively low stress levels. Most of the fatigue life is consumed in the initiation 
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phase [14]. The initial crack size for stable crack growth is calculated from the threshold stress intensity factor 

ΔKth: 

𝑎𝑖 =
1

𝜋
(

∆𝐾𝑡ℎ

𝐹𝑝∆𝑆
)

2

  (5) 

For a material with defects, the crack depth parameter ai represents to the area of the critical feature detected on 

the crack surface defined by the Murakami parameter. The equation for a semicircular crack takes the form [37]: 

𝑎𝑖 = √2/𝜋√𝑎𝑟𝑒𝑎  (6) 

The calculated value (ai = 315.7 µm) is consistent with the defect size for the upper confidence interval of the log-

normal distribution, as detailed in Section 3.2. From the observation of the specimen fracture, the final fracture 

length af increases with specimen size. The upward trend of the variable does not significantly affect the output 

value of the model. The crack propagation at the end of fatigue life is fast enough not noticeably increased the 

number of cycles. Table 4 shows the results of the analysis for a knee point of the P-S-N curve and the variable 

failure probability. The predicted fatigue strength for the crack initiation phase is slightly lower than the 

experimental total fatigue life Nf. The initiation phase occupies more than 90% of the fatigue life. The approximate 

values of the ns coefficient suggest a minor effect on the stable crack growth phase. The failure mechanism of the 

crack initiation phase significantly determines the fatigue strength of different sized specimens. The explanation 

of the phenomenon points to the implementation of a statistical model for material defects. 

Table 4. Predicted fatigue strength and ns coefficient for the crack initiation phase. 

Specimen 

number 

Failure 

probability, 

Pf [%] 

Fatigue strength for 5·105 cycles, 

Sf [MPa] 
Size effect coefficient, ns 

Total life, Nf Initiation life, Ni Total life, Nf Initiation life, Ni 

A02 

10 220.6 218.8 1.014 1.016 

50 235.9 234.5 1.009 1.011 

90 249.8 248.6 1.008 1.009 

A08 

10 217.5 215.2 

1 1 50 233.6 231.8 

90 247.7 246.2 

A32 

10 203.3 200.5 0.934 0.931 

50 220.5 218.3 0.943 0.941 

90 233.5 231.6 0.942 0.940 

2.5. Estimation of highly stressed volume 

The fatigue failure is dependent on the highly stressed volume (HSV) [18]. The fatigue strength is determined 

by the local volume of material subjected to at least n% of the maximum stress. The parameter is commonly 

estimated empirically for 95% [38, 39], 90% [40, 41, 42], 80% [19, 43, 44]. The approach is implemented for 

geometrically similar objects in which the local stress state is identical. The model in combination with the weakest 
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link theory proved the possible good prediction of P-S-N curves for variable stress gradient (axial, bending loading) 

[45]. The approach was implemented to transfer laboratory data to real-world objects under exploitation [46].  

A numerical calculation procedure based on FEA is used to determine the HSV. The CAD model is consistent 

with the experimentally tested specimens (Fig. 4). The calculations were carried out in ANSYS using the structural 

analysis module with constant boundary conditions in the linear-elastic analysis range. 20-node solid elements 

with three degrees of freedom per node with a square displacement character (SOLID186) were used. The selection 

of the finite element mesh was dictated by the discretisation error analysis carried out. The upper limit of the P-S-

N curve stress range was well below the yield strength so an isotropic elastic model of the material was used. The 

model parameters adopted were consistent with experimental data for SLM 316L steel (Table 1). An axial load 

was applied along the length of the specimen. Fig. 6 shows example boundary surfaces for four cases of maximum 

stress percentage. Each surface was determined from the normal stress distribution map along the z-axis. The 

variable n% was determined empirically by measuring the location of the macro-crack. Fig. 7 shows the location 

of the final crack against the symmetry plane (x-y) of the specimen. The ordinate axis is the normalized normal 

stress, which correlates to the limit of the highly stressed volume calculated according to FEA. The points represent 

the measured crack location as a function of specimen size, located on the numerically estimated normal stress 

curve. Most fatigue cracks do not occur in the centre of the specimen with the smallest cross-sectional area and 

highest stress. The random crack locations are determined by the local stress gradient and the nominal stress in the 

specimen section. All observed cracks are localised for HSV above 90% of maximum stress. The value was 

estimated based on the number of specimens according to Table 2. 

 

 

 

   

Fig. 6. Surfaces of highly stressed volume depend on the percentage of maximum stress (A08). 
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Fig. 7. Location of the final fracture on the numerical curve of normalized normal stress. 

3. Proposed size effect model 

3.1. General assumptions 

The failure mechanism analysis of AM materials suggests the important role of material defects as a factor in 

premature failure. The noted differences in the locations of experimental P-S-N curves for variable sized 

geometrically similar specimens might be simulated by statistical defect distributions. A larger volume of material 

determines a higher probability of a critical defect significantly decreasing the fatigue strength. The verification 

of the assumption was realized by implementing the proposed algorithm according to the identified steps: 

- the variability of defect size √𝑎𝑟𝑒𝑎 is described by a probabilistic measure represented by a log-normal 

distribution, 

- the randomness of defect location tb limits HSV for experimentally n%σmax and thickness td for subsurface 

volume, 

- the stress state in the vicinity of detected surface and subsurface defects is described by a non-local 

multiaxial criterion, 

- the criticality of the defect is calculated for the fatigue criterion threshold and numerical modelling results, 

- the random distributions of defects in a range of parameters (HSV, √𝑎𝑟𝑒𝑎, tb, ρd, defect type) are simulated 

for a population of numerical specimens, 

- the probabilistic scatter bands are predicted for the size effect coefficient calculated from the extreme 

value statistics of the equivalent normalized stress. 

The results are described in detail and discussed in the following sections. 
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3.2. Defect size 

The effect of defect size on fatigue strength is quantified using Murakami empirical fatigue criterion. The 

model provides an estimate of the experimental fatigue strength for materials containing defects. The approach 

assumes the use of √𝑎𝑟𝑒𝑎 as a geometric parameter for defects and Vickers hardness as a material parameter. The 

fatigue strength of the knee point percentage curve and mean stress is calculated from the equation [3]: 

𝑆𝑓(𝑅) =
𝑑𝑙 (𝐻𝑉+120)

√𝑎𝑟𝑒𝑎
1/6 (

1−𝑅

2
)

𝛼𝑀

  (7) 

𝛼𝑀 = 0.226 + 𝐻𝑉 ∙ 10 −4   (8) 

where √𝑎𝑟𝑒𝑎 is the defect size parameter, dl is the location of the defect (surface defect – 1,43; subsurface defect 

– 1.41; internal defect – 1.56), HV is the Vickers hardness and R is the stress ratio. The fatigue strength Sf is the 

threshold stress for the non-propagation of cracks, irrespective of the presence of a defect. Below this value, the 

crack initiated by the defect stops propagating without causing decohesion of the object. For defects smaller than 

a certain critical size or their absence, the fatigue strength depends on the failure behaviour of the microstructure 

in proportion to the hardness. 

The defect size controlling fatigue strength is defined as the critical defect initiating failure in a homogenous 

cyclic stress field. The correlation between fatigue strength and critical defect size is estimated from the Kitagawa 

Takahashi diagram as a function of power law [47]. The variables (√𝑎𝑟𝑒𝑎, Sf) plotted on bi-logarithmic scales can 

be approximated to linear regression. The defects above the straight line cause failure. The critical defect size for 

the experimentally tested specimen sizes and fatigue strength for 50% failure probability was calculated using 

Eq. (7). Table 5 shows the results for each specimen and the parameters of the linear regression equation. The 

material hardness (HV = 235) and the fatigue cycle asymmetry factor R = -1 were assumed. 

Table 5. Estimated critical defect size from the Murakami model for experimental fatigue strength and variable 

specimen size. 

Parameter 
Specimen number Average 

value 

Linear regression, 

𝑙𝑜𝑔𝑆 = 𝑘 𝑙𝑜𝑔√𝑎𝑟𝑒𝑎 + 𝑏 

A02 A08 A32 k b 

Sf [MPa] 235.9 233.6 220.5 230.0 
-0.167 2.704 

√𝑎𝑟𝑒𝑎 [µm] 97.6 103.5 146.4 115.8 

The implementation of the Murakami model is aimed to simulate the effect of defect size on the fatigue 

strength. The number of cracks initiated in defects varies non-deterministically, so the use of a probabilistic model 

is the basis for further analysis. The variation in defect size is well represented by a log-normal distribution. The 

probability density function takes the form: 
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𝑓(√𝑎𝑟𝑒𝑎) =
1

 √𝑎𝑟𝑒𝑎 𝜎√2𝜋 
∙ 𝑒

(− 
(ln (√𝑎𝑟𝑒𝑎)−µ)

2𝜎2 )
2

  (9) 

where µ, σ are the logarithmic normal distribution parameters (size, shape). 

Fig. 8 shows the measured defect sizes for each specimen size. Most of the crack origin were located in surface 

defects (solid points). The prevalence of failure from the surface is a common observation in the presence of 

defects, especially AM materials. The subsurface defects (empty points) represented a smaller percentage of all 

cases. The parameter √𝑎𝑟𝑒𝑎 is related to the size effect coefficient for a 50% failure probability. A decrease in the 

coefficient ns correlates with an increase in defect size. All measured data were estimated with a log-normal 

distribution (grey solid lines, µ = 4.8, σ = 0.5) independent of specimen size (number of specimen n = 28), assumed 

as a probabilistic material constant. The mean of the distribution (dashed line, √𝑎𝑟𝑒𝑎 = 107.2 µm) is close to the 

estimated average defect size from Eq. (7) (√𝑎𝑟𝑒𝑎 = 115.8 µm). The lower and upper limits of the confidence 

interval (α0 = 0.05) are marked with dotted lines. Under the mean of the distribution, the decrease in defect size 

does not significantly affect the decrease in fatigue strength. 

 

Fig. 8. Size effect coefficient for defect size estimated by log-normal distribution. 

3.3. Defects location 

The analysis of the failure mechanism indicates the location of the critical defect in the subsurface volume. 

The thickness of this volume determines the dimension td. The parameter is a material property as a function of 

the localization and size of the critical defect. The dimension td shall not be less than the greatest distance of the 

outermost point of the critical defect from the outer surface. The exact dimension does not significantly affect the 

outcome in terms of the proposed model. From the point of view of fatigue strength estimation, the distance of the 

defect (tb) from the outer specimen surface is more important than the dimension td. 
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Fig. 9 shows an example visualisation of HSV estimated numerically for 90%σmax (A08). The enlarged one-

quarter geometry (right side of the figure) defines a constant dimension td. The volume limit is determined by the 

specimen geometry along the y-axis and the outer surface of the HSV is approximated to a polynomial with y, z 

elements in the form x = f(y,z). The power of the nth degree polynomial equation is: 

𝑓(𝑦, 𝑧) = ∑ ∑ 𝑎𝑖𝑗𝑦𝑖𝑧𝑗𝑛
𝑗=0

𝑛
𝑖=0   (10) 

where y, z are known points, aij are coefficients of the polynomial calculated by the method of least squares. A 

second-order polynomial surface equation was obtained with a matching accuracy of R2 above 0.95. Table 6 

summarizes the numerically calculated HSV for td independent of specimen size. 

 

  

Fig. 9. Highly stressed volume limit for 90%σmax (A08). 

Table 6. Numerical value of highly stressed volume 90%σmax for variable specimen size (td = const.). 

Specimen number 
Highly stressed volume, 

HSV [mm3] 

A02 1.12 

A08 7.92 

A32 40.48 

The location of critical defects is determined by random values constrained by the model boundary conditions 

(equations describing HSV). A defect size according to a log-normal distribution (Fig. 8) is assigned to the 

generated 3D defect location. The idealised geometry of a simplified spherical defect is considered. The method 

has become widely used for defect modelling for specimens fabricated from aluminium alloys [48, 49], nickel 

alloys [50], steel [51, 52]. Few examples can be found of structure analysis considering complex microstructure 

[49, 53] applied to single defect geometry cases. The cross-sectional area of the 3D defect model corresponds to 

the geometrical parameter √𝑎𝑟𝑒𝑎. 

To generate a numerical model of the specimen requires determining the average number of defects per volume 

unit. The spatial density of defect distribution is described by the equation: 
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𝜌𝑑 =
𝑉𝑑 𝑛𝑑

𝐻𝑆𝑉
100%   (11) 

where Vd is the average defect volume, nd is the number of defects, HSV is the highly stressed volume. Considering 

the summarized information from the literature [11] and the energy density for the applied additive manufacturing 

parameters of 69.4 J/mm3 (Section 2.1), most of the data is below 2% defect density. The value under 0.5% is 

qualified as "highly dense" material [54]. The selection of process parameters provides a lower defect density [4]. 

The values of 0.1%, 0.5% and 2% were selected for further analysis. 

 

Fig. 10. Visualization of defect distribution in a highly stressed volume 90%σmax as a function of defect density ρd 

 (A08): a) 0.5%, b) 2%. 

The specified input data was applied to a parametric CAD solid model using a specially provided macro. No 

data optimisation procedures were used to generate the model. The numerical model is magnified 1000 times to 

avoid the problems of modelling a micro-scale object. Fig. 10 shows an example visualisation of a CAD model 

containing randomly distributed defects in the HSV. The macro determines the colour of the model depending on 

the defect size. The scale is divided into intervals corresponding to the estimated log-normal distribution of the 

√𝑎𝑟𝑒𝑎. The visualization shows critical defects for the correlation of the maximum defect size and the shortest 

distance from the outer surface of the specimen. The definition is general, described in detail in the following 

sections. The designed procedure allows generating a numerical model for any defect size distribution and 

specimen size. 

3.4. Multiaxial fatigue criterion 

The implementation of commonly used approaches comes down to treating the defect as a notch. The fatigue 

crack initiation is determined by the stress level at the hot spot of the notch and at a certain distance from that 
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location. In view of the high stress gradient, using a local approach can result in a large scatter of results and lead 

to predictive data with significant error. The dedicated models use non-local criteria averaging stresses over a 

point, line, volume [55, 56] or stress area gradient [57]. The local stress averaging procedures shift the distribution 

towards lower values. An increase in the stress gradient increases the impact of data averaging. 

The stress distribution in the vicinity of the defect is defined by the Crossland multiaxial fatigue criterion [23] 

used in other studies [58, 59, 60]. The calculated equivalent stress is a quantitative measure of defect criticality. 

The criterion considers the linear combination of the amplitudes of the second invariant of a deviatoric stress tensor 

J2,a and the maximum hydrostatic stress J1,max over a load cycle, according to the equation: 

𝜎𝐶𝑅 = √𝐽2,𝑎 + 𝛼𝐶𝑅  𝐽1,𝑚𝑎𝑥 ≤ 𝛽𝐶𝑅    (12) 

The stress value J2,a is obtained by double maximisation during the loading period: 

 𝐽2,𝑎 =
1

2√2
max
𝑡𝐼∈𝑇

{max
𝑡𝐽∈𝑇

√(𝑆̿(𝑡𝐼) − 𝑆̿(𝑡𝐽)) : (𝑆̿(𝑡𝐼) − 𝑆̿(𝑡𝐽))}   (13) 

where 𝑆̿ is the cyclic stress deviator tensor at two instantaneous times (tI, tJ) calculated for the maximum and 

minimum value reached in a sinusoidal cycle. The stress value J1,max is by the equation: 

 𝐽1,𝑚𝑎𝑥 =
1

3
max

𝑡𝜖𝑇
{𝑡𝑟(𝜎̿(𝑡))}   (14) 

The material constants αCR and βCR are determined from fatigue tests under two load conditions for unnotched 

specimens made of reference material. The parameters were calculated for knee point fatigue strength in the fully 

reversed torsion (τw) and fully reversed tension/compression (σw), using the following equations: 

𝛼𝐶𝑅 =
3𝜏𝑤

𝜎𝑤
− √3  (15) 

𝛽𝐶𝑅 = 𝜏𝑤   (16) 

The defect criticality is achieved for a Crossland stress σCR equal to the threshold parameter βCR. The comparison 

of results regardless of the level of stress amplitude requires the implementation of normalised equivalent stress 

calculated according to the equation: 

𝜎𝐶𝑅,𝑛 =
𝜎𝐶𝑅

𝛽𝐶𝑅
  (17) 

The sensitivity of the material to the statistical size effect was described by the nsCR coefficient for the normalized 

Crossland stress ratio. The same definition of stress is required to correctly determine the coefficient, as follows: 

𝑛𝑠𝐶𝑅 =
𝜎𝐶𝑅,𝑛 𝑚𝑎𝑥50%  𝐴

𝜎𝐶𝑅,𝑛 𝑚𝑎𝑥50% 𝐴0

  (18) 

where σCR,n max50% is the estimated mean normalised equivalent stress for the reference specimen A0 and the 

predicted specimen size A. The probabilistic approach of the proposed model assumes the use of Weibull 
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distribution for the fatigue strength corresponding to a fixed number of cycles of the P-S-N curve. The cumulative 

distribution function of the fatigue strength is estimated for any specimen size. 

3.5. Numerical simulations 

To analyse the local stress distribution around the defect depending on the size and location, numerical 

simulations were carried out using an idealised structure. The computational procedure involves modelling a 

representative volume element (RVE) [61] consisting of a steel matrix and a spherical defect (void). The object 

provides information on the local features of the stress distribution in the vicinity of the defect. Fig. 11 shows a 

model of the RVE geometry in the x-z section plane. The model defines the symmetry of the geometry and 

boundary conditions in the x-y and x-z planes. The object is a cube with a side of 1500 µm, 5 times the largest 

defect. The size of the RVE is considered to be the smallest volume represented for the total. In the z-axis direction, 

a tensile load F equivalent to normal stress was applied to the upper surface of the steel matrix. The variable void 

parameters adopted are defect size (√𝑎𝑟𝑒𝑎) and location along the x-axis (tb). 

  

 

Fig. 11. Boundary conditions for the RVE method of the spherical defect model. 

 

Fig. 12. Example of a subsurface defect on the failure surface of SLM 316L steel. 
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Fig. 12 shows the defect geometry of the numerical model (solid line) and the actual void (dashed line) 

observed in SLM 316L steel. The fracture surface follows the normal plane in the direction of the loading. The 

crack origin occurs in the lack of fusion defect. The parameter √𝑎𝑟𝑒𝑎 is measured in the x-y plane. The dimension 

tb is a modelled value assumed for the simulation of the numerical defect location. The measurement is defined 

relative to a simplified void geometry. 

The RVE is modelled using the finite element method (FEM) in the ANSYS software environment. The steel 

matrix is homogeneous materials. 3-D 10-node tetrahedral structural solid elements (SOLID187) with three 

degrees of freedom in each node (translations in the nodal x, y, and z directions) were applied. The elements have 

a square displacement characteristics and are suitable for modelling irregular meshes. The CAD model 

environment was enlarged 100 times to avoid problems caused by the small scale. The verification of the mesh 

discretization showed no significant effect of further refinement on the result. The acceptable accuracy was 

obtained for a maximum element size of 5 mm. In the vicinity of the defect refinement mesh. The average value 

of the element quality factor, i.e. the ratio of volume to edge length for a given element, is equal to 0.82 (a value 

of 1 indicates a perfect cube). The lower confidence interval for the ratio distribution is above 0.3. The model was 

generated as a continuum in terms of mesh and deformation. The approach allows the compilation and extension 

of the model to an infinite area guaranteeing the representativeness of the material. The steel matrix behaves as an 

elastic-plastic medium with non-linear isotropic hardening (Young's modulus: 170 GPa, Poisson's ratio: 0.3) fitted 

to the experimental stress-strain curve for stainless steel. The calculations were carried out in the structural analysis 

module under constant load and reaction conditions. The Crossland equivalent stress components (Eq. (13), (14)) 

are determined by the non-local method for each integration point of the finite element model. 

4. Results and discussion 

4.1. Defect criticality 

A procedure to estimate the local stress distribution was carried out using the finite element method to 

determine the influence of selected variables on the defect criticality. The macroscopic stress gradient around the 

defect depends on the load and the type of defect. The applied local approaches considering hot spot stresses do 

not result in a safe fatigue strength estimation [57, 62]. Many points are in the criterion failure zone. The non-local 

method was implemented to average the results for a defined sphere of radius r for each numerical data. A similar 

approach was verified for stainless steel [60] and aluminium alloy [59]. 

Fig. 13 shows the distribution maps of the normalized maximum principal stress. The views were generated 

for the same defect size (√𝑎𝑟𝑒𝑎 = 200 µm) at two locations (surface defect – Fig. 13a, subsurface defect – Fig. 
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13b). The critical stress state occurs in the volume region at the largest void diameter measured in the plane normal 

to the load. The maximum value is determined by the defect location, 2.11, 2.46 for surface and subsurface defect, 

respectively. In each condition, the extremum occurs in the plane of the smallest section of the steel matrix. The 

bridge between the subsurface defect and the outer surface determines the increase in local shear stress. 

 

Fig. 13. Normalized maximum principal stress distribution around the void (x-z plane): a) surface defect, b) 

subsurface defect. 

Fig. 14 shows the numerical simulation results for the averaged normalised stresses J2,a and J1,max of the 

Crossland criterion. The graphical visualization of the criterion is intended to simplify the comparison of results. 

The sloped continuous line is a criterion threshold. The data above the criterion points to the criticality of the 

defect. The location of the threshold is determined by the material constants αCR and βCR. The threshold is constant 

for all test configurations. A single analysis is computed for each variable marked on the graph. The load values 

and FEA parameters for all simulations are constant. The results in the graphs are shown for data above the nominal 
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stress. The results were averaged using a volumetric approach with a critical distance for a radius r of 60 µm. The 

value was estimated for a surface defect of √𝑎𝑟𝑒𝑎 = 100 µm. The output result was calculated using an iterative 

method, followed by data approximation. The threshold line is tangent to this base defect. Fig. 14a shows selected 

numerical data for variable r in relation to the local method. The assumed radius significantly affects the data 

averaging due to the significant gradient around the defect. 

The Murakami model, Eq. (7) determines the fatigue strength depending on the defect location dl (surface – 

1.43; subsurface – 1.41). The analyses were conducted for similar conditions to evaluate the correctness of the 

numerical model prediction. Fig. 14b shows data for a surface defect of variable √𝑎𝑟𝑒𝑎. The criticality of the 

defect increases with void size. The data follow the same trend in the direction of normal stress. A significant 

increase in the shear stress amplitude J2,a was not noted. The distribution is consistent with the basic theory of 

normal stress state in a notch. The following set of calculations compares results for subsurface defects of the 

variable √𝑎𝑟𝑒𝑎 (Fig. 14c) and the dimension tb (Fig. 14d). The range of defect sizes corresponds to the estimated 

log-normal distribution (Fig. 8). The increase in the defect criticality is proportional to the defect size. The 

behaviour of the numerical model is in line with the Murakami model. The correlation is particularly noticeable 

in the shear stress amplitude range. A decrease in the value J2,a indicates a decrease in the criticality for subsurface 

defects translating into an increase in fatigue strength. The high sensitivity of fatigue endurance was also obtained 

for variable thickness tb. The crack initiation is significantly affected by the location of the subsurface defect. A 

reduction in the depth of defect location causes a decrease in fatigue strength. 
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Fig. 14. Comparison of the normalized stress distribution with the Crossland criterion, variable: a) surface defect 

– data averaging radius r, b) surface defect – √𝑎𝑟𝑒𝑎, c) subsurface defect – √𝑎𝑟𝑒𝑎, d) subsurface defect – tb. 

The FEA results show a significant increase in the non-local stress distribution components of the Crossland 

criterion for the variable of defect location and size. The Murakami model does not take into account the defect 

location relative to the specimen surface. The largest defect is not necessarily critical. The model for estimating 

the size effect should take into account the sensitivity of fatigue strength to the thickness between the specimen 

surface and the subsurface defect. The defect criticality was defined using the normalised Crossland equivalent 

stress σCR,n according to Eq. (17). The maximum stress values were taken on the defect surface for selected 

configurations of the statistical model predictors (√𝑎𝑟𝑒𝑎, tb). The effect of variables was described by 

approximating the data using multivariate non-linear regression analysis. The equation for the quadratic area 

regression model for two variables takes the form: 

𝜎𝐶𝑅,𝑛 = 𝛽0 + 𝛽1√𝑎𝑟𝑒𝑎 + 𝛽2𝑡𝑏 + 𝛽3√𝑎𝑟𝑒𝑎𝑡𝑏 + 𝛽4√𝑎𝑟𝑒𝑎
2

+ 𝛽5𝑡𝑏
2  (19) 

where β0 is the intercept, β1 – β5 are the regression coefficients (1-α0 = 0.95). Table 7 contains the results for the 

second-order matching model. The high value of the coefficient of determination (surface – R2 = 0.99, subsurface 
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– R2 = 0.93) indicates a good fit for the numerical data. The regression coefficients are statistically significant (p-

value is less than 0.05). 

Table 7. Coefficients of the analytical model for the output variable σCR,n. 

Defect β0 β1 β2 β3 β4 β5 

Surface 0.7962 0.0018 - - - - 

Subsurface 0.8314 0.0026 -0.0054 -4.6664∙10-6   5.57∙10-8   3.4855∙10-5 

   

 

Fig. 15. Approximated equivalent stress for subsurface defect numerical results of defect size and distance from 

the specimen surface. 

Fig. 15 shows a graphical visualisation of the surface for a subsurface defect. The approximation range of the 

model corresponds to the limits of the system axes. The yellow area shows the Crossland criterion threshold 

exceeded (above 1). The proposed analytical model implements the maximum criticality of the defect occurring 

in the calculated HSV of the specimen depending on the size. The procedure of applying the approximation 

function to determine the stress σCR,n significantly reduces the computation time than the CAD model generation 

and FEM calculation. The model input data are the same as shown in Fig. 10. The defect criticality is calculated 

analytically by repeating the procedure n times for any number and size of HSV. The proposed definition of the 

tested material provides a statistical characterization of the size effect. 

4.2. Prediction of fatigue strength 

The proposed approach aims to simulate a critical defect in specimens of three different sizes, consistent with 

Table 2. Fig. 16 shows examples of defect locations in numerical specimens for variable defects density (ρd = 

0.5%; 2%). The abscissa axis determines the defect location as a function of specimen size for 90%σmax. The value 
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is measured along the z-axis of the specimen (Fig. 9). Each point is a defect found in HSV in the subsurface layer. 

The result is generated for the defect size distribution (Fig. 8) and the range of defect location consistent with the 

numerical analysis for tb,max = 100 µm (value independent of specimen size). According to the FEA, the critical 

defects above this value were not observed for the assumed defect size range. The stress σCR,n was calculated 

analytically according to Eq. (19) for a randomly generated (Mersenne Twister algorithm) defect location and size. 

The form of the model (surface defect, subsurface defect) was determined depending on the randomly generated 

defect location. The mean value of the stress σCR,n calculated for all points correlates with the median of the 

distribution. The stress σCR,n max (dashed line) for a critical defect depends on the specimen size and defects density. 

 

Fig. 16. Critical defects in HSV as a function of specimen size, defect density ρd: a) 0.5%, b) 2%. 



 
 

27 

 

The model validation was carried out for the experimental log-normal distribution of defect sizes (Fig. 8) and 

the estimated data based on the proposed approach. Fig. 17 shows the data set determined as a cumulative 

distribution function P and the reduced variance -ln(-ln(P)). The √𝑎𝑟𝑒𝑎 describes the extreme value statistic. A 

good fit of the data was obtained for linear regression. The agreement between the experimental and estimated 

values is the result of fitting the input log-normal distribution (µ = 2.2, σ = 0.9) to the output. The model input 

quantities result in correct estimation of the ratio of the number of surface (solid points) and subsurface (empty 

points) defects. The type of defect is important due to the selection of the analytical model, Eq. (19).  

  

Fig. 17. Comparison of extreme value distributions for experimental and estimated defect size. 

 

The stress σCR,n max was calculated for a population of numerical specimens, indexed as j = 1…n, where n = 

100. Fig. 18 shows an example of the simulation results for variable defect density. The values for randomly 

generated data are classified starting from the smallest, according to the relation: 

𝜎𝐶𝑅,𝑛 𝑚𝑎𝑥,1 ≤ 𝜎𝐶𝑅,𝑛 𝑚𝑎𝑥,2 ≤ ⋯ ≤ 𝜎𝐶𝑅,𝑛 𝑚𝑎𝑥,𝑛    (20) 

A linear regression (solid line) was approximated only for critical defects. Under the threshold of the Crossland 

criterion, a defect can cause failure but not increase fatigue strength compared to a defect stress σCR,n max of 1. The 

approach defines non-linearity of the model for small HSV. The stress σCR,n max50% (Eq. (18)) for a 50% probability 

can be predicted from the intersection of the solid distribution lines. The dashed lines show the output data for 

specimens A02, A08, A32. The expected value increases with specimen size, assuming the same distribution of 

defects. A smaller scatter of stress σCR,n max50% was observed for a defect density of 0.5%. The stress σCR,n max50% 

dependent on specimen size and defect density is the result of the sum of defect volumes. The variable is the input 

quantity for generating the numerical model of the specimen. 
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Fig. 18. Comparison of extreme value distributions of equivalent stress for variable specimen size and defect 

density ρd: a) 0.5%, b) 2%. 

Fig. 19 shows the correlation of the stress σCR,n max50% and the highly stressed volume. The points were generated 

for a population of the specimens. The stress was estimated according to the procedure described in the previous 

paragraph (Fig. 18). The selected range was approximated to a linear form (solid line) in a bi-logarithmic system. 

The determination coefficient R2 is above 0.99 for both defect densities. The lower range of the data is 

characterized by a plateau, peaking at a stress of 1.07. The nonlinearity of the model (dotted line) simulates an 

unobserved size effect for small HSV. The numerically calculated HSV (Table 6) is marked with a dashed line. 

The logarithmic correlation between stress σCR,n max50% and HSV determines the significant variation of parameters 

up to a certain limit. The decrease in fatigue strength for a large object volume is minor. The stress σCR,n max50% 

were determined for HSV of each specimen (A02, A08, A32). The stress ratio for the two specimen sizes is defined 
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as the size effect coefficient nsCR, according to Eq. (18). The input data for the reference specimen (σCR,n max50% A0) 

are the results for A08. The output data is the Weibull distribution of the fatigue strength for specimens A02, A32. 

The proposed approach is implantable for a non-linear model of the stress σCR,n max50% and HSV. Table 8 contains 

the results of the fatigue strength estimation for selected failure probabilities of 10%, 50%, 90% and relative error. 

The six prediction combinations were derived from two specimen sizes (A02, A32) and three defect densities of 

0.1%, 0.5%, 2%. Visible differences were observed in the analysed data. A better fit of the predicted data was 

obtained for a defect density of 0.5%. The analytical value Spred. is close to the experimental fatigue strength Sf. 

The average relative error values are 1.9%, 0.6% and 2.8%, respectively for 0.1%, 0.5% and 2%. 

 

Fig. 19. Approximation of the predicted equivalent stress for a highly stressed volume. 

Table 8. Experimental results and predicted values of fatigue strength. 

Specimen 

number 

Failure 

probability, Pf [%] 

Experimental fatigue 

strength, Sf [MPa] 

Predicted fatigue strength, 

Spred. [MPa] (Relative error [%]) 

ρd = 0.1% ρd = 0.5% ρd = 2% 

A02 

10 220.6 219.0 (-0.7) 218.6 (-0.9) 222.6 (0.9) 

50 235.9 235.2 (-0.3) 234.8 (-0.4) 239.1 (1.3) 

90 249.8 249.5 (-0.1) 249.0 (-0.2) 253.6 (1.5) 

A32 

10 203.3 211.7 (4.1) 205.9 (1.2) 195.7 (-3.7) 

50 220.5 227.5 (3.2) 221.1 (0.3) 210.2 (-4.6) 

90 233.5 241.2 (3.3) 234.5 (0.4) 222.9 (-4.5) 

Fig. 20 shows a graphical visualisation of the Weibull cumulative distribution function for fatigue life 5·105 

cycles. The points are experimental values for the chosen failure probability Pf. The solid line shows the result for 

the distribution determined from Eq. (1). The data transfer for a specimen of any size is carried out using a 

cumulative Weibull distribution and a correction coefficient for a variable fatigue strength Sf and a constant value 

of the aspect ratio α. The dashed lines were estimated based on the proposed probabilistic size effect model for all 
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analysed defect density. The plot shows that the model prediction for 0.5% agrees well with experimental results 

for probabilistic scatter bands. A similar fatigue strength estimation errors were obtained for the extreme failure 

probability. The calculation error usually increases as the HSV ratio of the predicted specimen to the reference 

specimen increases. The correlation is visible for 2%. The errors are significantly larger for A32. 

 

Fig. 20. Weibull cumulative distribution function of experimental and predicted fatigue strength for variable defect 

density. 

5. Conclusion 

The paper proposes statistical modelling of size effects for SLM 316L stainless steel. The point of the analyses 

is the noted correlation of specimen size and the location of the P-S-N curves for variable defect size. The 

simulations of selected factors on the fatigue fracture process, including numerical calculations of model variables, 

allowed us to propose the following conclusions: 

 The evaluation of the individual phases of the failure process did not show the influence of stable crack growth 

on the size effect. The change in crack end length for specimens varying in size does not significantly affect 

the estimated number of cycles. The propagation at the final stage for a long crack takes a small percentage of 

the total fatigue life. The modelling of size effects requires consideration of the failure mechanism during the 

initiation phase. 

 The FEA indicated an increase in the components of the non-local stress distribution of the Crossland criterion 

around the defect for varying defect location and size. The approximation of the numerical results obtained a 

good fit to the regression model. The procedure enabled the generation of critical defects in HSV depending on 

the specimen size. The predicted fatigue strength is determined by the ns coefficient calculated from the 

simulated extreme value distributions of the equivalent stress. 
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 The proposed model shows a strong ability to predict the statistical size effect for AM of stainless steel. The 

defect density determines the size effect behaviour. The defect size gradient depends on the specimen size. For 

selected distribution parameters, the simulated fatigue strength change correlates well with experimental data 

(average relative error equal to 0.6%). Increasing the accuracy of the model can be achieved by modelling the 

natural spread of the experimental data for the shape factor of the Weibull distribution. The approach requires 

implantation for engineering calculations recommending the use of fatigue characteristics with low failure 

probability. 
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