
University of Science and
Technology in Bydgoszcz

Institute of Telecommunications and
Computer Science

PhD Thesis

Sebastian Łaskawiec

Effective solutions for high performance
communication in the cloud

Supervisors
Michał Choraś

Tomasz Andrysiak

Bydgoszcz 2020

Acknowledgments

First and foremost, I would like to sincerely thank my supervisors, dr hab. inż.
Michał Choraś, dr hab. inż. Tomasz Andrysiak and dr hab. inż. Rafał Kozik for a
lot of support and guidance throughout the time of doing the research, as well as
writing the PhD thesis.

I have been extremely privileged to work with an amazing team focusing on
delivering the best open source caching solution in the world. I have always
received a lot of positive and constructive feedback from Tristan Tarrant, Gustavo
Fernandes, Dan Berindei, Galder Zamarreño, Bela Ban and many others.

I would also like to thank both my managers, Pedro Zapata Fernandez and
Bolesław Dawidowicz for helping me to promote Intelligent Operator idea and
finding proper balance between work and academic research.

I am deeply grateful to my whole family for motivating me to finish the PhD
thesis in a timely manner.

Last but not least, I would like to thank my wife, Aleksandra Łaskawiec for
a lot of support and understanding during the endless evenings spent in front of a
computer trying out different solutions for a specific problem.

This thesis is dedicated to my father, Waldemar Łaskawiec, who gave me a lot
of inspiration to start a PhD but sadly passed away before the completion of this
thesis.

Contents

1 Introduction . 9
1.1 From terminals to cloud computing 9
1.2 Modern, container-based cloud 11
1.3 Interconnected clouds . 14
1.4 Recent problems in cloud environments 15

2 Aims of the thesis . 18
2.1 Scientific achievements . 19
2.2 Structure of the thesis . 21

3 Related work . 22
3.1 Dynamic load balancing . 22
3.2 Accessing clustered applications deployed 22
3.3 Network protocols for client/server communication and encryption 25
3.4 Machine Learning overview . 28
3.5 Expert Systems overview . 38
3.6 Machine Learning in Expert Systems 40
3.7 Automated cluster maintenance system 41
3.8 Statistical significance for benchmark results 43
3.9 Related work discussion . 43

4 Proposed solution for service name indication for multi-tenancy
routing in cloud environments . 45
4.1 Introduction . 45

4.1.1 Transport Layer Security with Service Name Indication
extension . 48

4.1.2 Data grid systems and memory consumption 48
4.2 Proposed solution for identifying tenant using TLS/SNI

Hostname field . 50
4.3 Experiment environment description and tools used for the

evaluation . 53

CONTENTS

4.4 Experiments results . 54
4.5 Results analysis . 56
4.6 Limitations . 57
4.7 Further work . 57

5 Proposed solution for exposing clustered applications deployed in the
cloud . 59
5.1 Introduction . 59
5.2 Proposed solution for exposing clustered applications deployed in

the cloud . 61
5.3 Experiment environment description and tools used for the

evaluation . 66
5.4 Experiments results . 67
5.5 Results analysis . 68
5.6 Limitations . 69
5.7 Further work . 70

6 Proposed solution for switching communication protocols in the cloud 71
6.1 Introduction . 71

6.1.1 Network traffic in container-based clouds 71
6.1.2 Multiprotocol applications 72

6.2 Proposed solution for switching communication protocols 74
6.3 Experiment environment description and tools used for the

evaluation . 77
6.4 Experiments results . 77
6.5 Results analysis . 82
6.6 Limitations . 83
6.7 Further work . 84

7 Proposed solution for automatic detection of application
misconfiguration . 86
7.1 Introduction . 86

7.1.1 Machine Learning techniques for classification problems . 86
7.1.2 Operator Framework . 89
7.1.3 NoOps initiative . 91
7.1.4 Modern expert and recommendation systems

implementations . 92
7.1.5 Available metrics for prototype evaluation 93

7.2 Proposed solution for automatic detection of application
misconfiguration . 94

6

CONTENTS

7.3 Experiment environment description and tools used for the
evaluation . 97

7.4 Experiments results . 98
7.5 Results analysis . 98

7.5.1 Limitations . 102
7.5.2 Future work . 103

8 Conclusions . 106

9 Glossary . 108

10 Appendix . 110
10.1 Infinispan metrics . 111
10.2 Infinispan 9 memory usage . 113

List of Figures . 114

List of Tables . 116

Bibliography . 118

Abstract . 131

Streszczenie . 132

7

Chapter 1

Introduction

1.1 From terminals to cloud computing

Well known companies, such as Amazon, Apple or Facebook, offer their services
around the world thanks to the dynamic infrastructure offered by the cloud.
This would not be possible without the first data network application written
in 1960’s [56][61], that had used a network connection between a mainframe
computer and a terminal. In the 1970’s, with the increasing popularity of
network equipment, a new standardization effort was made by the hardware
vendors and a new layer of software was created - the middleware. Middleware
layer had exposed a standardized Application Programming Interfaces (APIs)
to the software engineers allowing them to write programs using the hardware
equipment. Only a few years later, in 1989, after transferring the data between
a client and a server using the Hypertext Transfer Protocol [110], Timothy John
introduced the term “World Wide Web”. It is estimated that the Internet had more
than 20 million of users 6 years later [115]. The next breakthrough event took
place in 2003, when Xen, the first virtualization hypervisor was invented [16].
Starting from that moment, it was possible to run a guest Operation System within
a host machine. Only 3 years layer, Amazon announced the Elastic Compute
Cloud Beta project, which is known as Amazon EC2 today[8]. Amazon was the
first widely-known public Infrastructure-as-a-Service offering. This approach was
adopted by the Open Source projects and in 2010 OpenStack [91] project was
founded. The Virtual Machine approach was very popular at that point of time.
However, many developers noticed that running multiple applications in the same
Virtual Machine often leads to problem with conflicting library versions. This
particular problem was solved by the Linux Containers project (LXC), which
was popularized by the Docker company in 2013. Containers allow to package
application, with all dependent libraries and an Operating System together. Once
the application is packaged, it is being stored in an immutable image and can be

Chapter 1. Introduction

Figure 1.1: Container technology history [90]

run on a host machine (typically as a Linux process). Open Containers Initiative
(OCI) takes containers one step further and standardizes APIs used to build,
store and run container images. Maintaining such an ecosystem of different
applications running at scale is very challenging. Based on a lot of previous
experience with Borg [121], in 2014 Google founded an Open Source project
for orchestrating Linux Containers, called Kubernetes [12]. Today, Kubernetes is
the most popular container-based cloud orchestrator [105]. It has been used as a
core for private, public and hybrid cloud offerings, such as:

• Tectonic (by CoreOS)

• Google Container Engine (by Google)

• or OpenShift Online (by Red Hat)

Throughout the history, most of the mentioned technologies had some impact
on each other. Figure 1.1 presents interesting relations that explain the connection
between Linux Operating System and container technology (through LXC project,
Docker containers and finally, standardized OCI initiative).

Even though container-based clouds require different approach for designing
applications from the traditional Virtual Machines, they are often picked by
the new projects (new projects are also called greenfield projects) and start-up
companies. One of the deciding factors of this success is the rapid growth of
the Open Source ecosystem around project Kubernetes. Today, it offers hundreds
of projects solving many of the common problems, such as application metric
collection (project Prometheus), tracing requests inside the cloud (project Jeager
or OpenTracing initiative) or Continuous Integration and Continuous Deployment
(project Jenkins). Kubernetes has also been designed with extensibility in mind.
Therefore, it has often been picked as the foundation for emerging technologies,
like Serverless [101].

10

Chapter 1. Introduction

Figure 1.2: OpenShift on OpenStack [2]

1.2 Modern, container-based cloud

Modern cloud environments need to operate as multi-tenant environments.
Typically, every physical host is split into smaller worker nodes. This step might
involve using some sort of virtualization technology. A worker node is then
responsible for running application workload. One of the commercial examples of
such a setup might be OpenShift on OpenStack - often referred to as “Triple-O”.
Figure 1.2 presents such a setup, where OpenStack platform uses the KVM project
to provide Virtual Machines that will be used as OpenShift worker nodes.

In a container-based cloud, application workload is typically run using
container technology. This setup has its justification in the security aspect of
the cloud. Virtual Machines are run by the host as processes, whereas containers
share a kernel with a host. To compromise this setup, an attack vector requires
escaping from a sealed environment twice - from a container to a worker node,
and then from a worker node Virtual Machine to a physical host. However,
since the hardware resources are shared among all application workloads, it is
possible to perform a side channel attack (from one application to another).
Most of the attack vectors rely on certain hardware vulnerabilities related to
speculative execution—including Spectre, Meltdown, Foreshadow, L1TF, and
other variants. Even though the security aspect is important for the cloud vendors,
it is often outweighed by the performance gains of a multi-tenant, container-based
environment for running application workloads. Compared to Virtual Machines,
container-based workloads are significantly faster [122] (performance evaluation
presented in Figure 1.3 shows container technology almost twice as fast as the
Virtual Machines).

Containers technology allows cloud administrators to control application
workload by controlling the amount of resources an application consumes and
isolating application one from another. This has been achieved by combining
CGroups [58], Linux Namespaces [59] and Linux Capabilities [57] in the LXC
project. Many Linux Operator System implementations (such as Fedora or Red

11

Chapter 1. Introduction

Figure 1.3: Performance comparison between Virtual Machines and Containers
[122]

Hat Enterprise Linux) also incorporate security-related projects, such as SELinux
[102] or AppArmour [10].

In order to schedule application workloads, a cloud needs an orchestration
layer. There are a few solutions competing in this area, including Mesos [9],
Docker Swarm [25] and Kubernetes [55]. From practical perspective, Mesos has
proven to support large-scale systems (hundreds or thousands of worker nodes).
This however comes with the cost of extensive complexity, which is not very
practical for small and medium systems. Docker Swarm uses Docker native APIs,
which might be considered as both an advantage and disadvantage. Projects such
as Podman provide alternative container runtime and are not compatible with
Docker Swarm. The last example, Kubernetes, is an opinionated orchestrator
created by Google. The implementation contains lots of good practices used by
Google’s internal cloud, called Borg [107][121]. At the time of writing this thesis,
Kubernetes is one of the most popular solutions used for orchestrating container
workloads [108] [105].

A typical Kubernetes deployment consists of several worker nodes and a much
smaller number of supervisor (also called Master) nodes. A high-level architecture
has been shown in Figure 1.4 [65].

A Master node contains several components, including:

• Scheduler - responsible for assigning application workloads to specific
worker nodes

• Etcd - a distributed data store, which stores cluster configuration

• API Server - used for reading and modifying cluster (and application)
configuration objects

• Controllers - a set of objects used to maintain current cluster state

12

Chapter 1. Introduction

Figure 1.4: Kubernetes Architecture [65]

A worker node contains a much smaller list of components, such as:

• Service Proxy - used for communicating with application workloads

• Kublet - a supervisor process that manages application workload running
inside a worker node

• Workload - a set of applications created by developers

A typical workflow for deploying application workload starts with building
container image and uploading it to a container registry (one of the commercial
examples is project Quay created by CoreOS). The next step is to send
an application description to Kubernetes API Server. Depending on special
application needs, there are several different constructs that might be used,
including “Deployments”, “StatefulSets” or “DaemonSets”. Kubernetes also
allows to store application configuration (in a “ConfigMap” object) or confidential
data (in a “Secret” object), such as TLS keys and certificates. The final step
requires defining application connectivity properties. For routing inside a cluster,
one might pick “Service” objects (which as based on Netfilter). For the ingress
traffic, there are many different concepts, including an “Ingress” (which is a
Reverse Proxy) or “Load Balancer Services”. Once all metadata gets uploaded
to the API Server, the Scheduler assigns a worker node to run the workload. The
scheduling mechanisms takes a number of different factors into consideration,
including node capacity or current load level. Once a node is assigned, a Kublet
process downloads the application image and starts the container process.

Separating responsibilities between cluster administrators and developers has
proven to be one of the biggest strengths of Kubernetes orchestrator. Each
group has its own set of tools required to maintain the system in good health.

13

Chapter 1. Introduction

Administrators for example might be very interested in project Cincinnati [18],
which allows automatic worker node upgrades with zero downtime. On the other
hand, developers might be interested in Istio project [46] that enables advanced
routing capabilities required by Microservices Architecture. Kubernetes modular
architecture allows to customize the cluster to meet all the needs from both the
application developer and cluster administrators.

Kubernetes also enables portability of an application workload between
different cloud vendors. Apart from some of the corner cases, developers should
see no difference between running their workload on Amazon AWS, Microsoft
Azure or Google Compute Cloud. Most, if not all, of the application workload
metadata should remain the same. This property is often referred to as Cloud
Native [47] and has been used as the foundation for creating Cloud Native
Computing Foundation (CNCF) [19]. Today, the foundation has been used
to govern many Kubernetes-related project, such as Prometheus, Etcd, Helm
or gRPC. CNCF’s governing board contains people from multiple commercial
companies, including Red Hat, Google, Apple, Oracle and many more.

1.3 Interconnected clouds

Making systems highly available and resilient (allowing them to be recovered
from a disaster) often requires running application workload on multiple clouds.
This may involve using multiple public clouds (where all the nodes are hosted
by a cloud vendor) or interconnecting public clouds with private ones (a private
cloud runs in a proprietary infrastructure owned by a company typically owning
application workload). Below is the list of the commonly used names in the
industry for specific scenarios [17]:

• Hybrid cloud - where the public and private clouds are interconnected

• Inter-cloud - a cloud that is capable of transferring the workload to other
clouds

• Federated cloud - multiple clouds managed as if they were a single cloud
instance

• Multi cloud - more than one public or private clouds together

At the time of writing this thesis, Kubernetes does not support Federated
model. There is an ongoing effort to implement it as an extension. One of the most
promising solutions is called Submariner [106]. Figure 1.5 shows the high-level
architecture of a multi cloud system based on Kubernetes. The aim of the project
is to allow containers deployed in two different clusters communicate with each

14

Chapter 1. Introduction

Figure 1.5: Submariner architecture [106]

other in a secured way. However, at this moment, Submariner does not support
any type of DNS-based discovery, so forming a cluster of an application workload
might be difficult.

Solutions presented in this thesis do not take Submarier into consideration. At
the time of writing, it is considered as an immature and unstable project; not ready
to be used in the production.

1.4 Recent problems in cloud environments

In recent years, cloud computing is being massively adopted by commercial
companies. Each branch of the industry has its own limitations and requirements
regarding the deployment and operational model for cloud computing. Most of
the challenges might be divided into the following groups 1:

• Application deployment strategies

• Authentication and authorization (both users and services deployed in the
cloud)

• Managing state in the applications

• Application auditing

• Application auto-scaling

• Application configuration management
1Dedicated groups have been inspired by Kubernetes Special Interest Group alignment:

https://github.com/kubernetes/community/blob/master/sig-list.md

15

Chapter 1. Introduction

Figure 1.6: Recent cloud challenges

• Networking and connectivity

• Multi-tenancy support

Among other groups of challenges, there is one very specific that is connected
to all the other aspects - Security. StackRox report mentions nearly half of the
surveyed companies delayed moving their application into production because of
the cloud security considerations. What is even more worrisome, 94 percent of
respondents admitted to experiencing a security incident in the last 12 months.
The vast majority of incidents were connected to misconfiguration (either on
container orchestration or application level). The same research also show there
is the growing demand on interconnecting clouds, especially in public domain
(multiple public clouds used for deploying a large system) [105].

Security related challenges might be divided into the following groups [94]:

• Transport security - providing confidentiality and integrity of data sent to
and from an application

• Protecting the data against side-channel attacks - making sure private
resources cannot leak from the cloud provider infrastructure

• Protecting the data against leakage - addressed on many levels, protecting
data from being stolen

Most of the problems are connected with each other. Nevertheless, some
typical challenges were gathered with corresponding groups in Table 1.1.
Figure 1.6 represents a diagram of recent challenges with typical examples. Red
boxes represent the research areas covered in this thesis.

The solutions proposed in this thesis relate to the last three groups. To some
degree, they also correspond to the security aspect, especially data encryption and
authenticating clients using a certificate.

16

Chapter 1. Introduction

Challenge group Typical examples of the challenge group
Application deployment strategies Deploying multiple replicas of an

application
Authentication and authorization Authenticating application users,

authorizing interaction between deployed
microservices

Managing state in the applications Storing data between application restarts
Application auditing Identifying who and when changed the

application configuration
Application auto-scaling Under what circumstances an application

should be scaled out / scaled in
Application configuration management Managing application configuration

Networking and connectivity Using custom binary protocols in the
cloud

Multi-tenancy support Dealing with multiple clients using the
same application

Table 1.1: Recent challenges in the cloud environment

17

Chapter 2

Aims of the thesis

The research aim of this thesis is to propose solutions for improving overall
communication performance with applications deployed in the cloud.

In order to reach that goal, the following tasks were defined:

1. To propose new methods for separating data between tenants and lower
overall memory footprint of the server. This includes designing a new
method for using TCP connection properties to identify individual clients
and designing a new method for accessing the client data from the outside
of the cloud.

2. To propose new methods for exposing clustered applications hosted in
the cloud for outside consumption, which includes designing an improved
solution for enabling client side load balancing for the server deployed in
the cloud.

3. To propose new solutions for switching communication protocols for the
application deployed in the cloud. The solution requires designing new
methods for switching to custom binary protocols reusing the same TCP
connection.

4. To propose new solutions for application configuration management and
finding common configuration mistakes. The proposed system should also
help maintain configuration for optimized performance and lowest possible
memory footprint.

The thesis statement is as follows (Listing 2.1):

Chapter 2. Aims of the thesis

It is possible to improve communication performance, defined
by either throughput or latency, and lower the memory
consumption by using new solutions and algorithms for protocol
negotiationand client side load balancing between a client
application and a service deployed in the cloud.

Figure 2.1: Thesis statement

2.1 Scientific achievements

The major contributions for the thesis are the four solutions improving network
communication performance, lowering application footprint, as well as helping
optimizing application configuration:

1. The proposed solution for service name indication for multi-tenancy routing
in cloud environments.

2. The proposed solution for identifying tenant using TLS/SNI Hostname
field.

3. The proposed solution for exposing clustered applications deployed in the
cloud.

4. The proposed solution for automatic detection of application
misconfiguration.

The following articles published in Polish and international journals prove that
the solutions in this thesis are valuable from the academic point of view and the
accessed challenges are valid:

1. Łaskawiec S., The evolution of Java based software architectures, Journal
of Cloud Computing Research, 2016.

2. Łaskawiec S., Choraś M., Considering service name indication for
multi-tenancy routing in cloud environments, International Conference on
Image Processing and Communications, 2016.

3. Łaskawiec S., Choraś M., Kozik R., Switching Network Protocols to
Improve Communication Performance in Public Clouds, International
Conference on Image Processing and Communications, 2018.

4. Łaskawiec S., Choraś M., Kozik R., New solutions for exposing clustered
applications deployed in the cloud, Cluster Computing, Volume 22, Issue 3,
pp 829–838, Springer, 2019 (IF=1,851).

19

Chapter 2. Aims of the thesis

Apart from the academic research journals, three United States Patents have
been filled for the solutions aiming for optimizing application configuration:

1. Secure configuration corrections using artificial intelligence
(0816028.00312/20191312) - A proposal of a system capable of finding
common configuration mistakes and advising application administrator
how to correct them. The proposal leverages Machine Learning techniques
to reference configuration (from a Knowledge Base) and metrics with
the current system state. Once a configuration mistake is identified, the
proposed system makes a suggestion on how to improve it.

2. Secure detection and correction of inefficient application configurations
(0816028.00312/20191312) - A system capable of automatic detection
and correction of application level configuration. The system leverages
Machine Learning techniques trained on the metrics obtained during the
testing phase. The system training dataset also consists of application
configurations, which are typically tested the during project testing phase
in a lab. This approach allows the system to learn upon the best known
configuration, incorporating all best practices from application developers.

3. Testing and selection of efficient application configurations
(0816028.00321/20191349) - A fully automated system proposal for
learning correct application configuration based on the performance
metrics and applying them automatically for new deployments. A
reference environment, such as a performance testing lab might be used for
training the Machine Learning model. However, in this proposal it is not
strictly required.

Some parts of the work related to this thesis were presented during many
informal meetings, including:

1. A seminar on Memory Consistency Models, presented at the University of
Science and Technology in Bydgoszcz in 2016

2. A presentation on JGroups Clustering Framework, presented at Virtual
JBoss JUG as well as at Toruń Java User Group in 2015

3. A presentation on Infinispan data grid project presented at JDD Conference
as well as at Toruń Java User Group in Kraków in 2015

4. A presentation on Infinispan data grid project dedicated for students,
presented at Nokia in 2016

5. A presentation on Linux Containers technology, presented at Toruń Java
User Group in 2018

20

Chapter 2. Aims of the thesis

2.2 Structure of the thesis

The thesis contains 3 different solutions for optimizing network connection and
1 solution for an expert system discovering common configuration mistakes in
application deployed in the cloud.

Chapter 3 contains a literature overview for all the 4 presented solutions.
Along with the solutions available on the market, this chapter also provides
necessary background and context for specific solutions. The final section of the
chapter provides a discussion on the work related to this thesis.

Chapter 4 introduces the first proposal of this thesis - Multi-tenancy support
based on TLS/SNI. The aim of the solution is to lower the server memory footprint
by sharing a single data container instance by many users (tenants). The first
section of the paragraph provides an introduction to the topic and is followed by
the solution proposal. The next section provides experiments results followed by
the results interpretation. The last two sections introduce the limitations of the
solution and provide a discussion on further work.

Chapter 5 presents the second proposal - exposing a clustered applications
deployed in the cloud. The main goal of the solution is to use a Load Balancer per
every application instance and client-side Load Balancing technique to increase
the overall system throughput. The chapter uses the same structure as the previous
one - an introduction is followed by the solution proposal, experiment results,
results interpretation, limitations and a discussion on further work.

Chapter 6 introduces the third proposal - using different techniques to switch
to a custom binary protocol for the client/server communication. The main goal
is to switch to the fastest possible protocol supported by both a client and a server.
The structure of this chapter is similar to the previous ones.

Chapter 7 presents the last proposal - leveraging Operator Framework along
with Machine Learning to detect incorrect application configuration. This
solution enables domain experts (like product Support Staff) to detect application
misconfigurations on client’s site automatically and suggest how to fix them in an
automated fashion. The structure of this chapter is similar to the previous ones;
however, a discussion on further work introduces a fully-automated system for
optimizing application configuration. The solutions described in this chapter have
been used to file two United States Patents.

Chapter 8 concludes the thesis and provides a discussion on all the presented
solutions.

21

Chapter 3

Related work

3.1 Dynamic load balancing

With the increasing popularity of the Virtual Machines, some of the researchers
and engineers focused on exposing multiple domains in a single server. There are
4 different approaches to this problem [119]:

• Client-based approach - The client decides what IP address should be used
for sending requests.

• DNS-based approach - A DNS server is responsible for exchanging the
domain name with proper IP address.

• Server-based approach - One server delegates requests to the others. A data
grid application is a common example of such a system.

• Dispatcher-based approach - A dedicated component (typically a Load
Balancer) is responsible for redirecting the traffic to the proper server.
Typically, this happens on URL level.

One of the biggest milestones in this area was publishing RFC7230 [92] and
releasing Apache 2.2 [72] with a “Name-based Virtual Host Support“. The RFC
defines, how the ”Host“ HTTP header shall be used for dispatcher-based routing
when hosting multiple Virtual Servers from a single IP address. The biggest
downside of this approach is that HTTP headers are part of the payload and are
encrypted when using TLS (see Section 4).

3.2 Accessing clustered applications deployed

The methods for exposing an application cluster deployed in the cloud to the
outside world have been investigated since the early days of cloud computing.

Chapter 3. Related work

Figure 3.1: Cluster as a Service overview [1]

The “Cluster as a Service” [1] approach based on the RVWS (Resources Via Web
Service) framework published in 2010 proposes an abstraction to expose a set
of WSDL-based web services deployed on multiple cloud vendors. One of the
most important characteristics of the framework is the ability to discover new
clusters automatically. This is made possible by using a broker architecture which
connects all the exposed clusters. A “client” application along with a “cloud
provider” specifies a required SLA (Service Level Agreement) for the client’s
request or work flow (Figure 3.1). An SLA is a type of contract between a cloud
provider and a client that describes the performance and functional characteristics
of a service.

The RVWS framework uses a Publisher Service to expose cluster
characteristics in WSDL format. Based on this information, the Broker can decide
which cluster best meets client requirements (Figure 3.2).

Even though the “CaaS” framework aims at different goals from those of this
thesis, it relevantly solves both the discovery and connectivity problems within the
cloud. The RVWS framework, which is a fundamental part of the system, focuses
on batch processing tasks and WSDL-based web services whereas solutions
presented in this thesis focus on high performance and low latency communication
required by modern caching solutions and the gaming industry. To address this,
the solutions presented in this thesis utilize basic parts of a “Publisher Service”
and offer direct communication with the cluster (similarly to “CaaS”). Since both
solutions allow the client application to communicate directly with the cluster, the
security concerns remain similar. However, the WSDL-based solutions are often
based on the HTTP protocol rather than TCP connection, with custom binary
protocols (network protocols which use binary arrays to encode commands and
data, often used in caching solutions). Since both edge routers and reverse proxies

23

Chapter 3. Related work

Figure 3.2: Exposing a cluster using Publisher Service [1]

offer many more configuration options for HTTP, the “CaaS” solution might be
considered to be the more flexible solution in terms of application security.

Exposing a cluster within the cloud is also similar (to some extent) to
multi-tenancy [97]. The distinction is that multi-tenancy is based on tenant
recognition, whereas exposing a cluster requires recognizing a specific server (to
which a specific request should be redirected). For HTTP-based protocols, there
are a number of options including cookie-based routing, or using a Host HTTP
header. However, high performance protocols are often limited to binary data
based on TCP or UDP transport. Even though the TCP protocol itself does not
have any support for these kind of solutions, encrypting traffic using Transport
Layer Security (TLS) with Server Name Indication (SNI) allows the use of the
HostName field [34], which contains a fully qualified server name. This approach
has been successfully used in the Section 4 paragraph.

An interesting approach (analyzed in depth in Section 5) is to use a Load
Balancer for each server deployed in the cloud, since most of the cloud vendors
use high performance solutions for load balancing. A similar type of functionality
has been provided by Fabric8’s Expose Controller [6]. This controller allows
exposure of a Load Balancer per group of server instances (not a Load Balancer
per server) and it does not provide any information about internal/external address
mapping. Still, from a technical perspective, the Expose Controller was used as a
source of inspiration for the technical solution presented in Section 5.

Finally, all the application instances need to operate on some sort of hardware.
The scheduler is typically responsible for assigning an application replica to a
node that runs the program. Even though scheduling algorithms are not strictly

24

Chapter 3. Related work

connected to the proposals mentioned in this thesis, it is worth mentioning that it
is an interesting and very important area of research for cloud-related applications
[3, 4, 64, 70].

3.3 Network protocols for client/server communication
and encryption

Securing network connections between clients and a server is very important in
heterogeneous cloud environments. Both clients and the server might be located
in different data centers (and communicating over the WAN). Also, application
developers should never trust the network environment of the cloud providers
(as they have no control nor deep knowledge about its implementation details).
One of the most commonly used solutions for connection security is using the
Transport Layer Security (TLS) for securing connections.

A popular choice of a network protocol used for client/server communication
involves using HTTP/1.1 or HTTP/2. The Hypertext Transfer Protocol (HTTP)
was designed in mid-nineties and had several subversions (0.9, 1.0, 1.1) since
then. In 2009, Google started to experiment with a protocol, called SPDY, which
was designed to solve the blocking limits of HTTP/1. Two years later, the Internet
Engineering Task Force (IETF) created a new version of the HTTP protocol,
called HTTP/2, which was based on SPDY. The main goal was to decrease a web
page loading times [99].

HTTP/1.1 is very simple at its design. It is a text-based, request/response
protocol. Over the years, there were several improvements introduced into the
protocol to increase its performance, namely the keep-alive feature (a single TCP
connection is being reused for many HTTP requests/responses) and pipelining
(sending more than one requests from the client at the same time). Figure 3.3
presents how the pipelineing feature works in the client - server communication
scenario. On the left side, a client sends synchronous requests one after another.
On the right side, the client sends two requests (the number of concurrent
requests depends on the client’s configuration) at the same time and waits for
both responses. However, with the increasing network payload size, HTTP/1.1
suffers from Head Of Line (HOL) problem, where the connection pool (from the
piplining feature) gets exhausted by transmitting larger objects. With the typical
web page size increasing, that becomes a problem.

HTTP/2 architecture is much more complicated and has the following
characteristics:

• It is a binary protocol.

• It uses the HPACK algorithm to compress HTTP headers.

25

Chapter 3. Related work

Figure 3.3: HTTP/1.1 request and response flow [99]

Figure 3.4: Performance comparison of HTTP/1.1 and HTTP/2 [99]

• It supports multiplexing (multiple data streams over the same TCP
connection)

• It implements the Server Push feature (the server can upload certain
resources to the client in advance).

• It uses TLS encryption by default.

As results show, HTTP/2 generally outperforms HTTP/1.1 without encryption
(TLS) turned on [99] (Figure 3.4 and Figure 3.5). With an increasing payload size,
the difference between HTTP/1.1 and HTTP/2 latency get larger. Since modern
applications are designed as a single web page Javascript applications, this change
is noticeable from the client’s perspective (in the client’s browser for example).

Some research groups focused on improving HTTP/2 performance report
interesting progress (especially beyond 90th percentile, it is also referred to as
“tail performance“) [51]. The authors used the RT-H2 Model to measure the
total time needed to load a web page by a real user (the parameter is called
PLT - Page Load Time). An experiment done on nearly 280 000 downloads

26

Chapter 3. Related work

Figure 3.5: Latency comparison of HTTP/1.1 and HTTP/2 [99]

Figure 3.6: Performance improvement with HTTP/2 Push and Prioritization [51]

from Akamai’s CDN showed that basic HTTP/2 features allow to improve the
90th percentile of PLT for nearly two thirds of the websites. Using HTTP/2
priorities and push feature allowed to extend this to other websites as well.
Figure 3.6 demonstrates performance improvement by using HTTP/2 Push as well
as Prioritization. The x-axis represents Page Load Time (PLT), whereas the y-axis
represents Cumulative Distribution Function.

When HTTP gets secured by TLS, it is often referred to as HTTPS.
Originally, this use case was designed for client/server applications that required
confidentially or authentication between peers (such as e-commerce, banking or
email). Today, most of the internet web pages are secured with TLS [41].

Each HTTPS connection starts with a TLS handshake sub-protocol shown in
the Figure 3.7. Depending on the handshake settings, the server and the client
need to perform 3 requests (often called RTTs - Round Trip Times). During the
handshake, the Public Key Infrastructure (PKI) suite is being used to authenticate
the server (and sometimes the client as well). Once the handshake is finished,
both the server and the client are ready to transmit HTTP requests and responses
encrypted and decrypted by the exchanged keys.

The Figure 3.8 presents TLS handshake costs. Scatter plot of the TLS
handshake duration with respect to server distance(left). TLS handshake duration
Cumulative Distribution Function (center). Ratio of TLS handshake bytes with

27

Chapter 3. Related work

Figure 3.7: TLS handshake sub-protocol [60]

Figure 3.8: TLS in HTTPS performance results [22]

respect to total TCP connection bytes Complementary Cumulative Distribution
Function (right). It is clear that extra latency introduced by TLS is not negligible
comparing to the time needed to send request and response [22].

3.4 Machine Learning overview

Increasing computing power and storage capacity influences the rapid growth
of Machine Learning industry. New algorithms allow to cluster calculations
into multiple stages and together with cloud computing enabled processing large
datasets. Modern systems are capable of giving users recommendation about the
next movie to watch, what book to buy next and help protecting their email boxes
from unwanted messages (spam filters). Machine Learning has also been used for
scientific tasks, such as tracking animal migration patterns from satellite pictures
or helping medical staff in diagnosing diseases[50].

Machine learning might be understood as an automated equivalent of
statistical learning. Both approaches provide a set of methods and tools for
understanding the data - a process of extracting meaningful information from a
larger dataset.

In a general sense, the Machine Learning techniques might be divided into:

28

Chapter 3. Related work

instance no. Feature no. 1 Feature no. 2 Class
1 5 0.11 Good
2 6 5.98 Bad
3 2 4.11 Bad

Table 3.1: A dataset example

• Supervised Learning

• Unsupervised Learning

• Reinforced Learning

In many cases, the Machine Learning model is trained using a table-like data
structure. Rows in the dataset are called ”instances“, columns - ”features“ and the
output used for classification - a ”class“ or a ”label“. An example of such a table
is presented in Table 3.1.

Supervised Learning requires building a statistical model and using it to
predict the output (a class, binary value or a number) based on one or many inputs
(features). Using Table 3.1 as an example, the model might qualify an instance to
a specific class based on its features. During the Supervised Learning process, the
model effectiveness might be accessed using different types of measurements.
This approach differs from Unsupervised Learning, where there is no way of
accessing an output of the model. The Unsupervised Learning technique assumes
there is no labeled data in the learning dataset. Usually, this technique is used
for pre-processing the data and dividing a large dataset into smaller groups
[33][24]. Another kind of Machine Learning is Reinforcement Learning, which
uses reinforcement signal (a scalar value) that constitutes a measure of how well
the system operates [100].

Machine Learning algorithms and methods can be divided into groups for
solving the following problems [82]:

• Predicting values (or regression)

• Item classification

• Anomaly detection

• Discovering structure

Predicting values based on learning dataset is often referred to as a regression
problem. One of the most fundamental techniques to address a regression
problem is the Linear Regression or Parametric Regression in general. The Linear

29

Chapter 3. Related work

Regression technique predicts output y based on input x using Equation 3.1 [67].
The more general form that takes multiple features into consideration might be
written as Equation 3.2. The subscript i is an observation index, whereas p
designates independent variables [44].

y = ax+ b (3.1)

yi = β0 + β1xi1 + β2xi2 + ...+ βpxip + εi (3.2)

Linear and parametric regression coefficients need to be found during the
model training process. This process involves minimizing the mean of squared
error (Equation 3.3) between measured and predicted values. There are two
most frequently used methods to do this - Gradient descent or the Least Squares
algorithms.

MSE =
1

n

n∑
i=1

(yi − ỹi)2 (3.3)

The final step of the training process is to access the accuracy of the model.
The most commonly used technique is R2, but there are others, such as Residual
Standard Error (RSE) or F-Statistic (omitted in this thesis as it applies to multiple
linear regression model).

RSE is computed using Equation 3.5 and Equation 3.4 formula. A useful way
to think about RSE is that if a and b had been known, any prediction of the output
value from the model would be off by RSE value on average. The question if this
is acceptable or not depends on the context.

RSS =

n∑
i=1

(yi − ỹi)2 =

n∑
i=1

(yi − (axi + b))2 (3.4)

RSE =

√
1

n− 2
RSS (3.5)

The R2 statistic is much more frequently used as its values are within {0..1}
range and can be calculated using Equation 3.6. Formally, TSS parameter can
be expressed as TSS =

∑n
i=1(yi − ȳi)2, however its general sense is RSS for a

model that always returns fixed values.

R2 = 1− RSS

RSS for mean
= 1− RSS

TSS
(3.6)

A Regression task might also be solved using Instance-Based Learning. One
of the popular algorithms of this class is called Nearest Neighbor (or Proximity).

30

Chapter 3. Related work

Figure 3.9: Nearest Neighbor algorithm pseudo-code [44]

Figure 3.10: DNF representation [44]

The algorithm stores the entire dataset and predicts the output based on the
Euclidean distance between a given set of features and the stored ones. Figure 3.9
presents the algorithm’s pseudo-code, which relies on normalized data (so that all
features values are within a continuous range between 0 and 1) and assumes all
instances are equality meaningful.

Another similar class of algorithms is called Locally Weighted Regression,
where features with certain values also have weights assigned to them. Weights
can be distributed evenly (this class of algorithms is called Linear Local Models)
or non-evenly (Nonlinear Models).

One of the interesting approaches to solving regression problems is to use
a rule induction mechanism. Certain algorithms use Disjunctive Normal Form
(DNF) for the process of learning decisions. One of the main advantages of this
approach is its explanatory capability. Figure 3.10 shows a sample diagram, where
the black dot is a query point. The shaded one is the nearest neighbor and the black
box inside of the diagram is the query region of searching for nearest neighbor.

One of the challenges of the DNF-based algorithms is that the rules are not
mutually exclusive. This may lead to a problem when for a given input, more than
one output may be satisfied. One of the most common solutions is to apply priority
or ordering of rules. Figure 3.11 represents a pseudo-code implementation for a

31

Chapter 3. Related work

Figure 3.11: Swap-1 pseudo-code [44]

Swap-1 - a rule induction algorithm. The most important part of the algorithm is to
build a rule from a set of components that will be evaluated to produce the output.
The Swap-1 algorithm searches all the conjunctive components it has already
formed, and swaps them with all the possible components it will build. This search
also includes the deletion of some components from the rule. If no improvement
is established from these swaps and deletions, then the best component is added
to the rule. To find the best component to be added, the predictive value of a
component, as a percentage of correct decisions, is evaluated. Once the rule is
selected, the algorithm performs regression based on query point [44].

The final class of algorithms analyzed for this thesis are the tree induction
algorithms, also known as regression trees. Tree induction algorithms construct
the model by partitioning the dataset. Each node in a tree represents a splitting
decision as shown in Figure 3.12. Regression trees are similar to the DNF-based
algorithms and their decision boundaries (this term is used for classification
algorithms but in case of regression trees, it also applies [67]) might be presented
in a graph, similar to Figure 3.10. However, the thing that makes decision
trees different from DNF-based algorithms is that the decision areas are mutually
exclusive. Both the regression and decision trees have been described in detail in
Section 7.1.1.

32

Chapter 3. Related work

Figure 3.12: Regression tree [44]

Figure 3.13: Logistic curve

In some cases, the model output is not quantitative (in other words, it is not a
number) but rather is qualitative (it is a category). In this case, the output variables
can be called ”categorical“. The process of predicting categorical data is called
”classification“ (or ”item classification“). The model that predicts a category
based on an input is called a ”classifier“.

One of the simplest approaches to classification is to use a regression model
with applied Sigmoid function function at the end. Figure 3.13 presents a diagram
of a Sigmoid function (Equation 3.7).

S(x) =
1

1 + e−x
(3.7)

Another group of algorithms is similar to the DNF-based regression
algorithms and is often referred to as rule-based classifiers. A commonly used
example is k-DNF, where k is a number of disjunctions. The goal is to construct
the smallest rule-set that is consistent with the training data [100].

The same symmetry applies to Regression and Decision Trees.
Fundamentally, both approaches are very similar. The only difference is
with the final outcome - Decision Trees produce a class in the output (as
presented in Figure 3.14). Section 7.1.1 contains more detailed review on
Tree-based Classifiers.

Another well-known group of algorithms is based on notion of perceptron.
A single layered perceptron can be briefly summarized by the definition: If
x1 through xn are input feature values and w1 through wn are connection

33

Chapter 3. Related work

Figure 3.14: Decision Tree example [100]

Figure 3.15: Feed Forward ANN [100]

weights/prediction vector (typically real numbers in the interval [−1, 1]), then
perceptron computes the sum of weighted inputs:

∑
i xiwi and output goes

through an adjustable threshold: if the sum is above the threshold, the output is
1; otherwise it is 0. A popular example of such an algorithm is called WINNOW
and its advantage is the fact that it can be trained in batches.

A single-layer perceptron-based algorithm is capable of classifying linearly
separable set of instances. For more complicated use cases, a multi-layered
perceptron-based approach needs to be used. Such an approach is often referred
to as Artificial Neural Networks (ANN). Such networks typically consist of large
number of units called neurons, joined together in patterns of connections as
shown in Figure 3.15.

During the classification process the signal at the input propagates all the
way through the net passing through certain neurons with activation threshold
set. Units in the network are typically qualified as inputs, outputs and ”hidden
units“, which are between an output and an input.

With the increasing computing power and large learning datasets (also called
”Big Data“), it is possible to create large Neural Networks. Such large networks
have no theoretical limitations to what they can learn. The more data is fed into
the network, the better it gets. Such techniques are also known as Deep Learning
and are one of the most innovative fields in Artificial Intelligence [49].

34

Chapter 3. Related work

Figure 3.16: Feed Forward ANN [100]

A slightly different approach to classification is used by Bayesian Networks,
which is based on estimating value from Equation 3.8. If R > 1, the result is i,
j otherwise. Bayesian Network is a graphical model for probability relationships
among a set of features. Figure 3.16 shows a simple network for classifying X
based on 4 features.

R =
P (i|X)

P (j|X)
=
P (i)P (X|i)
P (j)P (X|j)

=
P (i)

∏
P (Xr|i)

P (j)
∏
P (Xr|j)

(3.8)

Another interesting algorithm commonly used for classification is KNN
- K-Nearest Neighbors. Conceptually, it is similar to the Nearest Neighbor
algorithm but it calculates the proximity toK neighbors when qualifying instance
to a given class.

The last class of analyzed classification algorithms is the Support Vector
Machines (SVM). This class of algorithms uses the notion of ”margin“ - either
side of a hyperplane that separates two data classes. Maximizing the margin and
thereby creating the largest possible distance between the separating hyperplane
and the instances on either side of it has been proven to reduce an upper bound on
the expected generalisation error [100]. If training data is linearly separable, then
a pair of (w, b) described by Equation 3.9.{

wTxi + b ≥ 1, for all xi ∈ P
wTxi + b ≤ −1, for all xi ∈ N

(3.9)

The decision rule has been presented in Equation 3.10, where w is termed the
weight vector and b the bias.

fw,b(x) = sgn(wTx+ b) (3.10)

The solutions to both regression and classification might be used for anomaly
detection. Anomaly detection is heavily used, e.g. in Finance, IoT (Internet
of Things), Auditing or Healthcare. In most of the cases, Machine Learning
techniques allow to monitor applications (or systems) and prevent incidents by

35

Chapter 3. Related work

proactive maintenance. Anomaly detection techniques are often used when all the
three preconditions are met:

• Training data is labeled

• Anomalous and normal classes are balanced (in other words, the training
dataset contains anomalies but this is not the majority of cases)

• Data is not autocorrelated (in such a case, time series analysis is more
appropriate).

Gathering proper training set for anomaly detection is very complicated.
Very often, there is not enough data or anomalous and normal classes are not
balanced (e.g. there is only 1 case of anomaly per 10 000 normal cases).
All common Machine Learning classifiers will often miss anomalies during the
training (although there are some techniques that allow to solve this problem, for
example - resampling anomaly into the dataset). In a standard Machine Learning
process, anomalies are often treated as outliers and are removed from the training
dataset.

Anomalies might be divided into types:

1. Point anomalies - if the value represented by data lies outside the overall
pattern of distribution [120]

2. Contextual anomalies - if the value is an anomaly in a specific context

3. Collective anomalies - if a collection of data values are anomaly with the
respect to the entire dataset

There are many different approaches to detecting anomalies in a dataset. The
easiest (and probably the most common) approach is using the static rules. A
static rule set might be written by a domain expert and might contain all the known
anomalies. Assuming such anomalies do not happen often, this practical approach
might fit many use cases.

In some cases, there is no training dataset and Unsupervised Machine
Learning techniques need to be used. The easiest way to detect numerical
anomalies is to use percentiles and histograms. A common example is when a
data point lies beyond the 90th percentile of a all data values, it can be treated as
an outlier or anomaly.

Choosing a proper anomaly detection approach if often a difficult task.
Figure 3.17 presents a graph with explained algorithms and presents an intuitive
way of picking proper solution [82].

The last group of algorithms are the algorithms for discovering some sort of
structure (also called Pattern Recognition) in the data. Most of the algorithms use

36

Chapter 3. Related work

Figure 3.17: Anomaly detection technique algorithm

Unsupervised Machine Learning technique and are often used as a pre-processing
step for building more advanced models.

A commonly used technique for pattern recognition is called the Principal
component analysis (PCA). PCA finds the principal components (or eigenvectors)
of a data distribution spanning a linear subspace of the feature space (often called
eigenspace) [111]. The algorithm transforms data into a new coordinate system,
so that the greatest variance becomes the first coordinate (called the principal
component), the second greatest variance becomes the second coordinate and
so on [84]. Combining empirical variance described in Equation 3.11 and
projection coordinate described in Equation 3.12 the principal component might
be calculated as shown in Equation 3.13 and further components as shown in
Equation 3.14 [5].

V aremp(Z) =
1

n− 1

n∑
i=1

z2i , where z are observations (3.11)

z = xT v, where x and v are column vectors (3.12)

w(1) = maxw

n∑
i=1

(xTi w)2, where wTw = 1 (3.13)

w(k) = X −
k−1∑
s=1

(Xwsw
T
s) (3.14)

Independent Component Analysis (ICA) is another example of an algorithm
capable of separating a stream of data into meaningful parts. The algorithm was
invented for separating individual microphone signals from a combined signal. It
assumes the mixed signal is the sum of its components and is unable to identify
Gaussian components because their sum is also normally distributed [5].

37

Chapter 3. Related work

Figure 3.18: k-means example [5]

There is also a large group of algorithms that group individual data points into
larger groups. Typically, such algorithms are called the Clustering Algorithms and
the most commonly used examples are:

• K-means - which qualifies data points into larger clusters based on distance

• Gaussian mixture models - where data points are generated using
multi-variate normal distribution

• Density-based clusters - clusters are formed by the existence of a minimum
number of nearby data points

An interesting approach to clustering the data is used in the k-means
algorithm. The algorithms uses cluster centers (centroids) into random positions
and then minimizes Euclidean distance between each data point and its centroid
[5] (formally, the objective function was written in Equation 3.15). Figure 3.18
shows an example run of the algorithm on randomly generated data points.

minC1,...,Ck,µ1,...,k

k∑
i=1

∑
x∈Ci

||x− µi||2 (3.15)

Introducing Machine Learning into a software development process is not
an easy task. Getting the best results requires revisiting certain stages multiple
times. Researchers from Microsoft present a typical Machine Learning workflow
in Figure 3.19. The workflow consists of 9 stages. Some stages are data oriented
(data collection, data cleaning, data labeling) and some are process oriented
(feature engineering, model training, model evaluation, model deployment, model
monitoring). Nevertheless, a Machine Learning model implemented in a typical
software product requires continuous maintenance and tuning [95].

3.5 Expert Systems overview

A typical Expert System is software that is capable of analyzing given problem
and proposing a solution to it. The decision-making process involves matching

38

Chapter 3. Related work

Figure 3.19: Machine learning workflow

evaluations of multiple fashion attributes and is commonly referred to as Multiple
Criteria Decision Making (MCDM) [123]. An expert system simulates the
performance of an expert and its knowledge base contains problem-related
expertise.

The most important part of designing an expert system is to successfully
extract knowledge from an expert, perform its analysis and model it properly in
the system [52]. All phases are crucial for proper system functioning and lack of
any step may result in:

• Solutions being picked up without deep problem analysis

• Wrong assumptions of operating suggested solutions as scale

Most of the problems mentioned earlier might be summarized in two
fundamental questions:

• How to effectively extract knowledge from experts

• How to design systems to deal with problems with uncertain, value and
imprecise information.

Knowledge Acquisition and Documentation Structuring (KADS)
methodology addresses the former problem by viewing Knowledge Base
Systems (KBS) as a modeling activity [15][53]. Author’s key idea is that experts’
knowledge has computational interpretation - it is executable. The Knowledge
Base System is not just a container for knowledge but is rather an operational
model that exhibits some desired behavior that can be observed in the system.

Dealing with uncertain values and imprecise information in the Knowledge
Base System has been identified as the second important challenge of expert
system design. Using statistics and Machine Learning are (among others) the
techniques to deal with it (more information might be found in Section 3.6,
Section 3.4 and Section 7.1.1).

39

Chapter 3. Related work

Figure 3.20: Three ways to develop a Machine Learning system [83]

3.6 Machine Learning in Expert Systems

In typical scenarios, in a software development company, a Machine Learning
model is implemented by a ”developer“ with the help of a ”domain expert“.
Knowledge extracted from domain experts is typically stored in some sort of
data structure in a ”Domain Data“ repository (e.g. in the form of a spreadsheet).
Once the system is created, its main goal is to communicate with an ”end user“.
The system development process might happen in certain models [83] (shown in
Figure 3.20):

• Mediating domain experts through developers

• Domain experts accessing the system directly (such a system is called a
”teachable system”)

• A community of experts accessing the system directly (such a model is
called “massive open learning AI system”

When creating a Massive Open Learning AI System (MOLA), the researchers
discovered that preparing data for Machine Learning model often requires labeling
it. If this task is done by people, the amount of mistakes gets quite high. High
level domain experts also fall into this category. The authors found this paradox
as an interesting thing of human nature - “in order to teach machines, experts have
to behave like one of them“. However, this domain knowledge transfer is required
to train the Machine Learning model. One of the most interesting findings of the
research was that introducing a larger group of experts (a community of experts)
resulted in better behavior or a Machine Learning models.

Another interesting example of combining the Machine Learning methods
along with domain experts knowledge is diagnosing sleep disorders using the
Overnight polysomnography (PSG) method. This non-invasive method collects
various physiological data which is then scored by sleep specialists who assign

40

Chapter 3. Related work

a sleep stage to every 30-second window of the data according to predefined
scoring rules. A number of research studies showed that inventing an automated
classifier for PSG does not align visual sleep specialist predictions, or the exact
decision procedure is uninterpretable. The researchers solved this problem by
introducing the Automated Sleep Stage Scoring Algorithm (AASM), which used
both the rules engine and a Decision Tree Classifier. The proposed automated
sleep scoring system consisted of five main steps. Prior to analysis, the data
were pre-processed in accordance with AASM criteria for detecting REM phase
settings. Then, the features based on the AASM scoring rules were extracted from
the PSG signals. The third step entailed choosing an optimal threshold for each
feature. A likelihood ratio Decision Tree Classifier was then utilized to perform
the classification, and finally a set of temporal contextual smoothing rules was
applied on the annotated data [54].

The research shows the potential of leveraging both highly qualified domain
experts along with the Machine Learning methods. The output of this approach
produced better scoring accuracy and better interpretability by visual sleep
specialists.

3.7 Automated cluster maintenance system

Some researchers used Machine Learning techniques for automatic database
(DBMS) configuration tuning [23]. The researchers mentioned two major
difficulties found when implementing their prototype:

1. There are many configuration parameters available for tuning

2. The impact of many configuration parameters comes only from (expensive)
experience

The authors used a combination of Supervised and Unsupervised Machine
Learning techniques to select the most impactful configuration parameters, map
unseen workloads to previous workloads from which the model can learn and
recommend configuration parameter settings to the user. This approach is much
more generic than other solutions implemented by database vendors (which
leverage inside-knowledge to get the best tuning results). The prototype created
for this research has been named OtterTune and uses high level architecture shown
in Figure 3.21. The controller is responsible for collecting information about
performance. This information is then sent to the manager and stored in the
repository. Later on, this information is used to build a Machine Learning model
and predict (suggest to the user) configuration settings.

Once the data is stored in the repository, a Machine Learning pipeline
is being triggered (shown in Figure 3.21). Archived observations (from the

41

Chapter 3. Related work

Figure 3.21: OtterTune architecture

Figure 3.22: OtterTune Machine Learning pipeline

repository) are being passed to Workload Characterization section, where the
most distinguishable metrics are being chosen. During the next step, in Knob
Identification section, the most impactful configuration parameters are being
identified. Finally, Automatic Tuner use metrics and configuration parameters
(knobs) to come up with a configuration proposal. Once the configuration is put
into life, the outcome metrics are being fed back to the system.

The authors used several Machine Learning techniques to achieve their goal.
The first step is to reduce the number of metrics obtained by the system. In order
to do that, a dimensionality reduction technique called Factor Analysis [30], in
combination with k-means algorithm has been used. This allows to group metrics
into meaningful groups. The next step is to identify configuration parameters
most correlated with overall system performance, with a linear regression method
called Lasso. Finally, Automatic Tuner uses the Gaussian Process regression
to recommend configuration that it believes will improve the target metric
(performance).

The results of this work are very promising. OtterTune generates
configurations in under 60 min that are comparable to the ones created by human
experts (in 94% of the cases).

42

Chapter 3. Related work

3.8 Statistical significance for benchmark results

In order to check whether benchmark results differed from each other in any
meaningful way, a test of significance needs to be performed for each pair of
results. The test is based on a null hypothesis which assumes that both tested
mean values are equal (see the equation below). The research hypothesis is that
the means are different [62].

µ0 = µ1 (3.16)

Since the samples are independent from each other, and the measured
groups are not linked to each other, the significance test can be done using the
“Two-Sample t-Test for Equal Means“:

Z =
X1 −X2√
σ2
1
n1

+
σ2
2
n2

(3.17)

where X1 and X2 are sample means, σ21 and σ22 are variances and n1 and n2
are sample sizes.

The final step is to prove that the calculated Z value is between (−∞, 1− α
2 >

∪ < 1 − α
2 ,∞) for the tested hypothesis that µ0 6= µ1. For α = 0.05 (99%), the

tested interval is equal to (−∞,−2.58 > ∪ < 2.58,∞).

3.9 Related work discussion

Accessing services deployed in the cloud from the outside is very
important, especially in interconnected cloud environments. Typical
applications following microservices architecture often require HTTP-oriented
communication; however, highly scalable, in-memory storage systems offer more
advanced features when using custom binary protocols. Some intelligent client
applications use the client-side load balancing techniques to optimize they way
the data is accessed (a common example are consistent hash aware clients - a
technique often used by in-memory data stores).

Section 3.1 presents different options for balancing the traffic in a dynamic
fashion. The research mentioned in this thesis focuses on the Client-based
approach, as it enables performance optimizations for accessing (and modifying)
the data in an in-memory data store application hosted in the cloud.

Services deployed in the cloud often require configuring an additional
component for ingress traffic. In most cases, such a component is either a HTTP
Proxy or a Load Balancer. The former focuses on the HTTP protocol and enables
broker approach as described in Section 3.2. The latter often allows exchanging

43

Chapter 3. Related work

binary data between a client and a server but may lack many configuration
parameters, such as stickiness options. Data-related applications often transmit
large portions of data between a client and a server. In many cases, this data needs
to be sent in binary format. Literature analysis related to HTTP/1.1, HTTP/2
and TLS protocols (described in Section 3.3) proves that different protocols may
help optimizing latency (or throughput) when communicating with an in-memory
data store. Furthermore, the TLS protocol provides extension, such as SNI or
ALPN, that might be helpful for routing traffic to a specific application instance
or negotiating a communication protocol.

Maintaining high performance, clustered data storage system requires deep
understanding of many configuration parameters. A very similar problem applies
to very well known database systems, such as Postgresql. One of the proposals
of this thesis introduces an automatic configuration corrections system using
Machine Learning, which is an evolution of a similar concept described in
Section 3.7. Based on practical experience and the related literature related to
Expert Systems (described in Section 3.6) and Machine Learning (described in
Section 3.4 and in Section 7.1.1) it is desirable to design an automated system
capable of leveraging domain expert knowledge (oftentimes product Support
Engineering Staff) to find common application configuration mistakes in an
automated fashion. Such a system has been proposed in Chapter 7.

44

Chapter 4

Proposed solution for service
name indication for
multi-tenancy routing in cloud
environments

4.1 Introduction

With the rapid growth of IaaS platforms, cloud vendors started experimenting
with new type of offering - Platform as a Service. Platform as a Service approach
allows to access a single application instance by many different clients. This
allows vendors to better utilize resources and maintain a single application cluster
instead of multiple ones. This setup performs very well for stateless applications,
where a customer passes data into the service and gathers the results (for example
a service for sending emails). However, operating data stores is much more
complicated and requires separating data per clients (also known as tenant). The
second concern is to maintain security context for accessing the data so that each
tenant could access only their own partition.

Unfortunately, there is no generic solution for isolating the data between
tenants and each service needs to come up with its own ideas. Database vendors
often use database schema approach (schema per tenant), whereas data grid
projects separate the whole clusters from each other. A lot of software deployed
in the Cloud uses REST as the main communication interface. However, HTTP
messages contain a lot of overhead and gaining maximum performance requires
using transport protocols and sockets directly (UDP and TCP). A common way of
securing a client/server connection is to use the SSL/TLS protocol. Additionally,
a TLS extension called Service Name Indication (SNI) allows transmitting client

Chapter 4. Proposed solution for service name indication for multi-tenancy routing
in cloud environments

Figure 4.1: Multi-tenant communication

host name and choosing proper private key and certificate pair used for encryption
on the server side. The same mechanism can be reused for choosing proper data
partition simplifying data isolation aspect.

Running multiple applications in the cloud requires separating one of them
from another. Oftentimes, such an application needs to be divided by tenants
(Figure 4.1). Tenants can be coarse grained like companies or fine grained like
projects or departments within a company. Applications within single tenant
should operate within a single security domain, therefore, should be able to
directly communicate with each other. Communicating to other tenants may need
passing additional security checks (e.g. additional authentication or encryption).

The multi-tenant separation is often done in layer 2 and 3 of the OSI model
and over the years the industry came up with different standards to achieve that
[87]; however, the high level concept remains the same. Each VM (or container)
is attached to a virtual NIC and packets are routed through a virtual switch. The
implementation also needs to handle layer 3 and moving VM from one compute
node to another. Some of the Cloud vendors mention what technology is used
in their products, for example OpenShift by Red Hat uses Open vSwitches [79,
75] (Figure 4.2 and Google Cloud Platform developed their own project called
Andromeda [38].

For some applications, tenant separation also needs to happen at the
application level. The most common example is sharing a database installation
between multiple users (or tenants) (Figure 4.3). Similar deployment model is
often used on premise by larger organizations. A single database installation
serves data for multiple projects.

The database industry came up with a concept of database schema [112] for
supporting multi-tenancy. It allows to host multiple data containers in a single
database instance. This approach requires a clear separation between data hosting
layer and the transport in the application. This approach might not always be valid
for high performance, since data intensive application of each tenant might have
different transport requirements. A perfect solution should allow setting transport
properties per each individual tenant.

46

Chapter 4. Proposed solution for service name indication for multi-tenancy routing
in cloud environments

Figure 4.2: Open vSwitch architecture

Figure 4.3: Multi-tenant application

47

Chapter 4. Proposed solution for service name indication for multi-tenancy routing
in cloud environments

Multi-tenancy aspect of an application becomes more important when
considering a larger system. Sharing components between tenants allows to lower
the operating costs by lowering resource consumption. At the same time, every
large system exposing its functionality to multiple tenants needs to maintain a
required degree of data isolation.

4.1.1 Transport Layer Security with Service Name Indication
extension

The Transport Layer Security (TLS) is responsible for establishing (or resuming)
a secure session between a server and a client. In order to decrypt the data, both
the server and client need to follow a handshake procedure which involves the
following:

1. Negotiating cipher suite

2. Authentication

3. Exchanging keys

When designing services are deployed in the cloud, the server needs to use
different encryption keys for each client while its IP address remains the same.
A similar problem occurs when hosting multiple virtual web servers on a single
IP address and using the host header for multiplexing. For TCP or UDP based
transports, the host header is encrypted and therefore the server cannot read it
before finishing TLS handshake. In order to accomplish the handshake, the server
needs to choose a proper certificate based on client’s hostname (Service Name
Indication) [68][116]. A simplified flow diagram might be found in Figure 4.4.

Typically, a Reverse Proxy in the front terminates TLS and sends unencrypted
traffic to the service deployed in the cloud. However, in some scenarios, such a
Reverse Proxy cannot be trusted. In this case, the hostname field from TLS/SNI
is used to take routing decisions.

4.1.2 Data grid systems and memory consumption

The data grid market (and distributed caching in general) is very competitive.
Different vendors try to propose the fastest solutions (with the highest throughput
and lowest latency) and the smallest possible resource consumption. Storing
data effectively is one of the most important deciding factors when considering
deploying a large system in the cloud. Table 4.1 shows an annual cost per 1 GB
of memory for a Virtual Machine. Considering a large amount of data and a large
number of replicas, the total cost of hosting an in-memory data store system might
turn out to be very high.

48

Chapter 4. Proposed solution for service name indication for multi-tenancy routing
in cloud environments

Figure 4.4: TLS handshake with SNI

Cloud Provider Cost
AWS 78 USD per year per GB

Google Cloud 78 USD per year per GB
Microsoft Azure 64 USD per year per GB

Table 4.1: Memory pricing by the biggest cloud vendors [20]

49

Chapter 4. Proposed solution for service name indication for multi-tenancy routing
in cloud environments

Programming languages with managed runtime, such as Java, allow creating
high performance systems but at the cost of high memory usage. Infinispan project
(a data grid solution written in Java) reports over 400 MB of committed memory
(more information might be found in Section 10.2) without any data loaded into
it. Redis (a simple caching solution written in C++) on the other hand reports less
than 10 MB. Even though data grid solution offer much better feature set, it is clear
that 40 times lower memory footprint drastically lowers the system maintenance
cost.

4.2 Proposed solution for identifying tenant using
TLS/SNI Hostname field

The major contribution of this proposal is to design a solution that allows to
decrease memory consumption per tenancy without compromising performance
in a data grid system. This solution has been tested using a dedicated testing
environment proving that the goal of decreasing memory consumption
was achieved; however, the proposed solution introduced degradation of
performance.

Achieving low memory consumption offered by lower-level programming
languages (such as C/C++) is very hard when using Java (although there is
ongoing work related to GraalVM and Quarkus projects to address this problem
[42][86]). However, it is worth noticing, that in-memory data grid systems
are often accessed by multiple clients (usually application servers in a cluster).
Having this in mind, the memory consumption problem might be addressed in
other way - by introducing multi-tenancy. This allows multiple client applications
use their own segment of the data container in a secured fashion.

Authenticating and authorizing a client to access a data segment could be
addressed at many levels. At the top level, there is an application, which may
use a tenant-id and grant (or deny) access to a specific segment of the data.
This requires a reliable mechanism for authentication and incorporating access
rules to bind clients with the data segments. When considering a layer below -
transport, many data store systems allow configuring transport-specific settings
per each tenant individually. A common example could be two clients storing
small amount of large objects, which requires a small amount of worker threads
with large send and receive buffers and storing large amount of small objects, that
requires large number of worker threads with small send and receive buffers. This
also applies to security aspect - each client may require different authentication
and encryption settings. In order to archive the biggest flexibility, it makes sense
to provide transport security and authentication settings at the transport layer (and

50

Chapter 4. Proposed solution for service name indication for multi-tenancy routing
in cloud environments

Solution Priority
Data container isolation Must-have

Authentication Must-have
Reverse Proxy support Good-to-have

Small performance penalty Good-to-have

Table 4.2: Requirements for proposed solution

not application layer). The ”hostname“ field from TLS/SNI allows the server to
choose a proper private key for client/server communication and assuming the
transport component can only be wired into single data segment, this ensures data
separation between the tenants.

In a typical Cloud environment, hosted services are separated from the outside
network and an additional routing component is needed to forward requests to
inner servers from the clients (Figure 4.3). Most container-based clouds use a
Reverse Proxy to handle ingress traffic to the cloud. However, Reverse Proxies
are HTTP oriented and very limited when routing encrypted traffic. In such cases,
the TLS/SNI extension allows to analyze ”hostname“ field (which is encrypted)
and make routing decisions based on it. In a typical scenario, the ”hostname“ field
contains a Fully Qualified Domain Name (FQDN) of an application.

Both using the TLS/SNI requirement for encrypted traffic in container-based
clouds and providing the best flexibility when configuring encryption settings at
transport layer in memory store projects are strong arguments for designing a
TLS/SNI-based approach for multi-tenancy.

Apart from the thesis goals, a well designed solution for multi-tenancy
support should fulfill secondary goals, that have been gathered in Table 4.2.
The data container isolation as well as authentication are connected with each
other. Data container access can only be granted upon authenticating a client
application. Reverse Proxy support and small performance penalty are more
practical requirements as they lower operational costs (by using the publicly
available Reverse Proxy apart from expensive Load Balancers) and improve
overall system performance.

The proposed multi-tenant router separates data containers (also known as
Hotrod Servers) from TCP Servers (transport layer components) and starts a
single frontend for all the inner services (Figure 4.5). This approach has smaller
resource consumption (opposed to starting a frontend server per each Hotrod) and
completely decouples forwarding requests from data container operations.

Each TCP Server uses Netty framework which is based on handlers
architecture. All handlers are gathered together in a concept called Pipeline,
where each handler is responsible for a piece of work (for example encrypting
data using SSL or decoding data into user defined structures) [71]. This kind of

51

Chapter 4. Proposed solution for service name indication for multi-tenancy routing
in cloud environments

Figure 4.5: Multiple data containers and a router

pattern is very common when designing network protocols and is used by many
popular libraries, for example JGroups framework.

The router uses concept called Routes for forwarding network traffic from
an input to a proper Hotrod instance. Each route consists of ‘RouteSource’
and ‘RouteDesitnation’. A ‘RouteSource’ is responsible for recognizing used
network protocol and gathering all necessary information to distinguish clients
- in case of SNI based ‘RouteSource’ this would be also SNI Hostname. A
‘RouteDestination’ is responsible for forwarding data to a proper component -
in case of Hotrod server it takes all its handlers and adds them to the pipeline
(Figure 4.5).

The algorithm requires initiating the TLS connection between a client and a
server (line #7). Since the solution assumes using encryption, every non-TLS
connection is rejected (line #20 and #21). Once the TLS handshake procedure
finishes, the algorithms extracts the TLS/SNI ”hostname“ field and stores it
into shn variable (line #8). The next step is to analyze the routing table
configured in the server and extract only those routes, that can be routed from
TLS/SNI incoming source to Hotrod destination and match ”hostname“ field
(stored previously in (line #8). This filtering has been implemented using lambdas
in lines #12 - #15. It is expected that only one route matches these conditions. If
none of them matches the criteria, an exception is thrown (line #17). Finally,
the routing algorithms removes itself from communication pipeline and attaches
handlers responsible for sending the traffic to proper Hotrod Server.

The algorithm was designed with performance in mind. The algorithm
complexity analysis should take the worst case into account. Therefore, the Big-O
notation is the best tool to do it [113], since it provides only an asymptotic upper
bound for a given function f(n). A formal definition of the Big-O notation is
presented in the Equation 4.1.

52

Chapter 4. Proposed solution for service name indication for multi-tenancy routing
in cloud environments

1 Input: Inbound TLS/SNI connection ic
2 SNI Handler sh
3 Routing table rt
4 Connection pipline p
5 Output: RouteDestination rd
6

7 if(sh.handshakeAccepted(ic))
8 shn = sh.getHostname()
9 Collection<Route> r = rt.getRoutes()

10 // Use lazy evaluation for routes
11 Route rd = r
12 .filter(ri -> ri.source() is SNISource)
13 .filter(ri -> ri.sniHostName() == shn)
14 .filter(ri -> ri.desitnation() is HotrodDestination)
15 .getFirst()
16 if(rd == null)
17 throw Exception("No Route")
18 pipeline.removeHandler(sh)
19 pipline.addHandlers(rd.sestination().handlers())
20 else
21 throw Exception("No TLS/SNI Connection")

Figure 4.6: Routing function implementation pseudo-code

g(f(n)) =

{
f(n) : there exist positive constants c and n0 such that

0 ≤ f(n) ≤ cg(n) for all n ≥ n0
(4.1)

The proposed algorithm’s complexity is proportional to the number of routes
in the routing table. Using a Big-O notation it might be written as O(n).

An optimized implementation has been proposed as a multi-tenancy
implementation for Infinispan project 1.

4.3 Experiment environment description and tools used
for the evaluation

The experiments were performed in three stages - initial performance tests were
executed on local laptop, validation tests were performed on OpenShift 3.11
cloud and the validation and performance tests were executed inside Red Hat
performance lab using a tool called PerfAck.

1The code can be accessed using the following URL
https://github.com/infinispan/infinispan/pull/4348

53

Chapter 4. Proposed solution for service name indication for multi-tenancy routing
in cloud environments

Test description Iterations Test result [ms/op] ± Error
1 Data Container without TLS/SNI router 31 3.046 0.096
1 Data Container with TLS/SNI router 31 12.725 0.379
2 Data Containers with TLS/SNI router 31 13.471 0.449

Table 4.3: Initializing connections

The initial tests were performed on Intel R© CoreTM i7-4900MQ CPU @
2.80GHz, 16 GB RAM laptop using Linux OS (Fedora F23). All testing scenarios
were written in Java using JMH [77] tool (a micro-benchmark framework).

The validation tests were performed using OpenShift 3.11 cloud deployed on
AWS. The system consisted of 3 Master nodes and 2 Worker nodes. Such a system
was initialized solely for running multi-tenancy test. Most of the background tasks
were turned off to minimize interference with testing harness.

4.4 Experiments results

The implementation enables the TLS/SNI-based connections to Infinispan server
using a Java Hotrod client. A ‘RouteSource‘ and a ‘RouteDestination‘ interfaces
are generic enough to connect all the various types of services. However, this
flexibility comes at the cost of performance. In order to determine how much
overhead it adds, a JMH [77] test was performed and the results were gathered in
Table 4.3 and Table 4.4. Every connection from a client is handled by the Hotrod
Endpoint (a frontend component of Infinispan server), that may use the TLS/SNI
router plugin. The plugin is responsible for connecting a client to a proper data
container. The aim of both experiments is to measure performance overhead for
both initiating a secured connection and performing operations against the data
grid system. The tested scenarios include a system without proposed solution
(”1 Data Container without TLS/SNI router“), a system with proposed solution
and a single data container (”1 Data Container with TLS/SNI router“) and a
system with proposed solution and two data container (”2 Data Containers with
TLS/SNIrouter“). The scenario with multiple data container might be referred as
”multi-tenancy“.

Table 4.5 and Table 4.6 contain calculated significance measure between each
tested pair of benchmarks based on the procedure described in Section 3.8. For
α = 0.05 (99%), the tested interval is equal to (−∞,−2.58 > ∪ < 2.58,∞). The
calculation results show that all the benchmark pairs are statistically significant.

Additionally, the implementation slightly increases heap usage as the new
routing component is being used. The total amount of occupied in memory (RSS
- Resident set size) by the data grid process has been gathered in Table 4.7.

54

Chapter 4. Proposed solution for service name indication for multi-tenancy routing
in cloud environments

Test description Iterations Test result [ms/op] ± Error
1 Data Container without TLS/SNI router 31 430.075 18.088
1 Data Container with TLS/SNI router 31 847.909 34.479
2 Data Containers with TLS/SNI router 31 1022.655 32.316

Table 4.4: Performing 10 000 Cache PUT operations (op in this context is equal
to 10 000 put operations)

2 Data Containers with
TLS/SNIrouter

1 Data Container with
TLS/SNI router

1 Data Container
without TLS/SNI
router

3.27

Single server without
SNI

58.49 103.91

Table 4.5: Significance measure matrix between benchmark results for initializing
connections

2 Data Containers with
TLS/SNIrouter

1 Data Container with
TLS/SNI router

1 Data Container
without TLS/SNI
router

9.52

Single server without
SNI

41.22 27.64

Table 4.6: Significance measure matrix between benchmark results for performing
10 000 Cache PUT operations

Test description Occupied memory
Multi-tenancy turned off 482 MB
Multi-tenancy turned on 491 MB

Table 4.7: Total memory usage (RSS) with and without multi-tenancy feature

55

Chapter 4. Proposed solution for service name indication for multi-tenancy routing
in cloud environments

Number of tenants Occupied memory
1 491 MB
3 164 MB
5 99 MB
10 49 MB

Table 4.8: Total memory usage (RSS) compared with the number of tenants

4.5 Results analysis

Deploying systems in a virtualized environment, like container-based clouds,
gains popularity very quickly. When considering data store applications like
databases or data grids, hosting a single service for multiple tenants is one
of the best ways to lower operational costs by lowering memory consumption
per single tenant (or user). Multi-tenancy is not an easy concept from
the implementation perspective as it requires special care for separating data
containers between tenants. In many cases, storing data in the cloud also requires
confidentiality applied to both the data container and transport. The TLS/SNI
router implementation turns out to be very helpful when addressing both those
concerns at the same time. TLS ensures the connection is encrypted and SNI
allows to recognize tenant and helps choosing the right partition to access.

In case of transmitting public data that do not require encryption, some
additional HTTP headers can be used to help the router make proper data access
decision. It is worth mentioning, that using other authentication methods is a
strong requirement in this case. Otherwise, separating data between tenants could
not be achieved. The router implementation is to be flexible enough to support
all the scenarios mentioned above (additional RouteSource implementations are
required in that case).

Using TLS/SNI for routing adds some additional overhead for communication
(more than 1 milliseconds for initializing connection and 175 milliseconds for
performing 10 000 operations). Additional delay for initializing connection
is expected and usually does no harm, but adding 17 microseconds per each
operation might be a bit too high for the performance-sensitive scenarios.

Introducing the TLS/SNI router implementation requires additional memory.
For the testing environment, the total system occupied by the data grid grew by 1.8
percent (from 482 to 491 MB). However, with the increasing number of tenants,
the effective amount of memory allocated per tenant gets lower. Table 4.8 shows
the effective allocated memory compared to the number of tenants. As the results
show, with 10 tenants, the occupied memory is less than 50 MB (which might be
considered as a very good result for a Java Virtual Machine process).

56

Chapter 4. Proposed solution for service name indication for multi-tenancy routing
in cloud environments

The memory consumption test proves that the thesis aims have been partially
achieved. Even though the lowering memory consumption goal has been met, the
overall performance metrics with the TLS/SNI router are worse.

In the future, the routing algorithm can be further optimized to meet even
more strict performance requirements. The Route filtering mechanism seems
like a good candidate for optimization, but it can speed up only the initializing
connections (after the handshake, the routing handler removes itself from the
pipeline). Exposing settings for tuning connection pools, as well as using EPoll
are much better candidates for optimization. Servers like Infinispan Hotrod are
designed carefully for optimal performance and the router should expose as many
configuration parameters as possible to allow fine tuning for achieving the best
possible results in each scenario.

4.6 Limitations

Systems implemented using Java usually require large amounts of memory
in runtime. This also applies to Infinispan. Even though a multi-tenancy
implementation helps lowering memory footprint of a data grid server, its
effectiveness is closely related to the number of tenants using the system. This
means the proposed solution will not be very effective for a small number of
users. In such scenarios, there are better tools that might be used for storing the
data, such as data grid solutions written in C/C++ or Go.

Another limitation of using TLS/SNI is the necessity of encrypting the
traffic. Although doing it is considered as a good practice in most of the
cases, in high performance scenarios without storing sensitive data, it might be
considered as a drawback. As shown in Table 4.3, initiating TLS connection is
almost 10 ms slower than initiating a non-encrypted connection. Performance
test results shown in Table 4.4 indicate the transmission that is almost twice
slower over the encrypted transport. All this is expected but in some scenarios,
application developers favor performance over security (especially if they trust
their infrastructure).

4.7 Further work

After evaluating the prototype, the multi-tenancy implementation has been
introduced to FeedHenry project [31]. The goal was to replace existing
Redis-based cache infrastructure with a multi-tenant Infinispan data grid. During
the evaluation, the FeedHenry team noticed that one of the key elements for
a multi-tenant system is to be able to add new tenant with zero downtime.
Since the implementation used a static routing table, fulfilling this requirement

57

Chapter 4. Proposed solution for service name indication for multi-tenancy routing
in cloud environments

was impossible. Along with new requirements, the Infinispan team decided
to re-architect the Infinispan Server to allow faster boot time. Faster boot
time allows to workaround the dynamic reload problem with Rolling Upgrade
procedure [126]. Once a new configuration is applied to the cluster, each server is
dynamically replaced by a new replica with updated configuration.

The multi-tenancy feature was also backported to the product - Red Hat Data
Grid. Since then, it became a fully-supported solution used by many customers of
Red Hat company.

58

Chapter 5

Proposed solution for exposing
clustered applications deployed
in the cloud

5.1 Introduction

Components offered by modern cloud vendors are often dedicated to a standard
web applications. In most cases, such an application consists of backend services,
that implement business logic, a frontend web server, that communicates with
users, and a data store - typically a relational database. When an application hosts
content for multiple users, it is often recommended (or even required) to use a
caching layer between the application backend and the data store layer. Caching
is also a good fit for modern application architectures, such as microservices [56]
where a single user request might cascade into multiple calls between backend
services. Each call introduces additional latency and decreases the overall user
experience.

Modern caching solutions, often known as Data Grids, need to respond to high
application demands and offer data storage within a distributed system without a
single master node. This goal can be achieved by using consistent hashing for
data partitioning which allows data access with O(1) complexity [32]. Consistent
hashing can also be used by a remote client application for calculating which node
in a data grid cluster owns the data, and how to access the data within the shortest
possible path (without redirecting from one node to another).

Each system needs to be deployed on appropriate hardware in order to provide
value to users. Each system may have different demands, and IT departments
inside companies might focus on different characteristics (e.g. time to market, or
time required to onboard a new development crew member). Cloud computing

Chapter 5. Proposed solution for exposing clustered applications deployed in the
cloud

Figure 5.1: Accessing application instances between clouds

fits perfectly into those requirements and has therefore gained popularity very
quickly [35]. Enterprise application demands very often require a hybrid approach
between a private cloud (where all the components are installed in a standard
on-premise data center) and a public cloud (where all the components are
hosted by a cloud vendor). Those scenarios are especially challenging from the
point of view of discovery and connectivity. Some cloud platforms (such as
Kubernetes [55] or OpenShift [78]) encapsulate all the traffic within the cloud,
exposing a single point for accessing inner components (Figure 5.1). Since most
vendors aim for a standard web application which uses the HTTP(S) protocol for
communication with the client, the component responsible for ingress traffic is
usually a Reverse Proxy rather than an edge router or L4 (Transport Layer of OSI
model) Load Balancer. A Reverse Proxy usually offers more features related to
the HTTP protocol (such as load balancing and content compression) than an edge
router (which is focused on L3/Network routing) or L4 Load Balancer (which
uses transport layer information to make balancing decisions). This approach is
very convenient from the security’s point of view, where a single component is
responsible for both defending the system against unwanted traffic (the firewall)
and handling encryption/decryption (SSL termination).

Although this architecture makes a lot of sense for a typical application,
some types of deployments need to consume topology information in order
to optimize system performance. Common examples are high efficiency data
grids and gaming systems. Many video games use RTP (Real-time Transport
Protocol), which was originally designed for delivering audio and video content,
for communicating with one or more dedicated servers. Those systems can be
viewed as if they were using a client-based load balancing technique [119] where
topology information is essential to fulfill all application requirements. Apart
from caching and gaming, there are also a number of hybrid cloud applications
where part of the cluster is hosted inside a public cloud and part of it is hosted
within a traditional on-premises data center. This approach can sometimes be
seen when using the quorum-based systems where the majority of instances are

60

Chapter 5. Proposed solution for exposing clustered applications deployed in the
cloud

Solution Priority
Discoverability Must-have
Connectivity Must-have

Possibility of automation Good-to-have
Small performance penalty Good-to-have

Table 5.1: Requirements for proposed solution

hosted in the cloud for stability, while the minority are hosted within a data center
to improve communication speed.

Enabling client-based load balancing requires achieving two major properties
- discoverability and connectivity. Discoverability represents a way to identify
topology information - in particular the number of server instances, exposed
ports and IP addresses. This enables the client to configure the connection pool
according to that information. Connectivity represents an ability to connect to
those internal instances directly. It is also worth mentioning that both the caching
and gaming industry have very high demands on application throughput at low
latency. Therefore, an ideal solution needs to have minimal negative impact on
both of those characteristics.

5.2 Proposed solution for exposing clustered applications
deployed in the cloud

The major contribution of this proposal is to design a solution for exposing a
clustered, consistent hash-based service deployed in the cloud, so that it can be
accessed from an external topology-aware client. This solution has been tested
using a dedicated testing environment and the results are satisfactory.

Apart from the aim of this thesis, solutions for exposing clusters deployed
within the cloud to the outside world need to fulfill discoverability and
connectivity criteria. A client application needs to be able to discover nodes in the
cluster, as well as to establish connections to individual cluster members. A good
solution also needs to introduce the smallest possible penalty on performance
(defined by the throughput in operations per second). The final goal is full process
automation which is required from a cluster auto healing perspective. A full list
of requirements and priorities is presented in Table 5.1.

One of the initially evaluated solutions was securing the transport with TLS
and use of the SNI extension to decide which server receives the request from
the client (Figure 5.2). This solution is natively supported by many Reverse
Proxy applications used by cloud vendors (such as HAProxy [43] or NGNIX [74])

61

Chapter 5. Proposed solution for exposing clustered applications deployed in the
cloud

Figure 5.2: The router approach for system design

Test description Result [ms/test]
Single server without TLS 430.075

Single server with TLS/SNI 847.909

Table 5.2: Performing 10 000 Cache PUT operations with different TLS
configuration [97]

thus it can be easily automated. The biggest downside of this approach is that
the performance is 30% lower (Table 5.2) than when using non-TLS encrypted
transport.

An alternative approach is to use a custom Load Balancer application which
is able to decode additional, non-standard TCP and UDP options. This options
could be used to send and receive topology information. However, deploying
a custom Load Balancer is not possible in many cases (usually it is a cloud
administrative task). Even though this solution has been rejected from further
exploration, using a dedicated component for routing behind a Load Balancer was
used as a foundation for exploring Reliable Asynchronous Clustering [89] and
Cross Site Replication using Gossip Routers [104]. At the time of writing this
thesis, both solutions are being implemented into Infinispan project.

The next group of possible solutions are those based on the use of Load
Balancers provided by the cloud vendors. For many cloud vendors, Load
Balancers and reverse proxies are considered one and the same; however, they
are considered separately in this research. Most solutions of this nature (such as
Amazon Elastic Load Balancer [29] and Google Cloud Load Balancer [36]) are
optimized to serve high volume traffic whilst introducing the smallest possible
loss of performance. Network Virtualization efforts which integrate seamlessly
with both Load Balancers and SDN are used within the cloud to achieve much
better results than ever before [39][37]. To solve the connectivity problem, it
is possible to allocate a Load Balancer per node in the cluster. Since creating
a new Load Balancer and a new binary proxy very often requires a REST API

62

Chapter 5. Proposed solution for exposing clustered applications deployed in the
cloud

Figure 5.3: The proposed system

call to an API exposed by a cloud vendor, this process can be easily automated.
Finally, the discoverability problem can be solved by creating a new application
which exposes mappings between internal and external IP addresses for a cluster
deployed in a cloud.

The final proposal is presented in Figure 5.3. Each Load Balancer instance
has a publicly accessible IP address, and in fact, many cloud vendors treat Load
Balancers as an external/virtual IP implementation. Each request is passed into
a binary proxy (a proxy which forwards messages sent using binary protocols),
then finally to an application instance. The motivation behind implementing
proxying is that in container-based clouds, application instances can often be
restarted (e.g. because of balancing hardware resources utilization or auto-scaling
in and out process). The proxy acts as a safety buffer pausing any communication
until application instances are ready to process the incoming requests. Another
argument is that creating and destroying Load Balancer instances can take some
time (on Google Cloud Platform it is a matter of minutes). With binary proxies,
the number of create/destroy events can be limited.

The use of Load Balancers and binary proxies fulfills the connectivity
requirement. A newly created component called an External IP Controller
instance is responsible for automating the process of discovering new application
instances and creating proxies, as well Load Balancers for all instances. This
component also exposes a REST endpoint (which serves YAML-based content
with internal/external IP address mapping) that helps the client application to
determine which application instances are mapped to which addresses. This
thereby satisfies the discoverability requirement. However, during application
benchmarking it turned out that implementing binary proxy communication
degrades the performance (Table 5.3).

Therefore, it was decided to remove binary proxy (along with all its benefits)
and propose the final optimized prototype as own solution.

63

Chapter 5. Proposed solution for exposing clustered applications deployed in the
cloud

Test description With binary proxy Result [ms/op]
Perform 10 000 Put Operations Yes 352.822

Perform 10 000 Put and Get Operations Yes 131.926
Perform 10 000 Put Operations No 131.926

Perform 10 000 Put and Get Operations No 221.711

Table 5.3: Binary proxy benchmark results

Figure 5.4: The diagram of the Evaluated system

The final prototype was implemented using open source technologies such
as Kubernetes. The main argument for choosing Kubernetes is that it does not
depend on any particular cloud vendor (in other words it can be hosted using any
public cloud provider such as Google Cloud Platform or Amazon Web Services).
As for client/server communication, Infinispan is a data grid implementation
which uses a Consistent Hash algorithm for locating primary owner [32] nodes for
a specific portion of the data. This optimization tactic allows to asses whether the
prototype improves communication performance or not. Figure 5.4 presents the
evaluated prototype system. Each application instance (deployed as Kubernetes
Pod) has its own unique, local IP address, which is not accessible from the
Internet. In order to make each instance available from the Internet, a Load
Balancer was used. Each Load Balancers points to a single application instance,
which allows to make the routing decisions very efficiently (the routing table
contains only one entry). A Hotrod client was deployed on a local laptop and
communicated over the Internet with application instances deployed in the cloud.

Hotrod is the name of Infinispan’s custom binary protocol used for
transmitting data to/from the Infinispan server. The Hotrod client obtains topology
information upon its first connection to the cluster. The topology contains a list of
servers and their internal addresses (10.0.5.5, 10.0.6.5 and 10.0.7.5). The External

64

Chapter 5. Proposed solution for exposing clustered applications deployed in the
cloud

1 Input: External address
2 Output: Internal address
3

4 externalAddress = internalAddress
5 if (needsExternalMapping())
6 externalAddress = getExternalAddressFromCache(internalAddress)
7 if (externalAddress == null)
8 externalAddress = queryExternalIpController(internalAddress)
9 putInExternalAddressCache(internalAddress, externalAddress)

10 return externalAddress

Figure 5.5: Hotrod internal/external address mapping algorithm

IP Controller service provides mapping (using a REST service) between internal
(e.g. 10.0.5.5) and corresponding external addresses (e.g. 104.155.17.202).
This information allows the client application to reconstruct the consistent hash
provided by the Infinispan server. Each topology update follows the same update
pattern on the client’s side. The biggest advantage of this approach is that the
modification only needs to be applied to the client’s code 1, and the server is not
aware of any translation process.

The algorithm used by the Hotrod client is presented in Figure 5.5. The
algorithm takes an external address as a parameter and produces an internal
address that is used between application instances to communicate with each
other. In order to optimize the algorithm, a local cache has been used that contains
already resolved mappings.

Lines #1 and #2 represent external and internal Hotrod Server address. The
client checks if the external mapping addresses feature is turned on (Line #5) and
performs translation. The code in Line #6 queries a local address translation cache
(the cache uses expiration logic to avoid stale entries) and if an entry is not found,
it queries the External IP Controller to obtain an external IP address corresponding
to the internal one. Once mapping is obtained, it is being put into the local cache
(Line #9).

The creation and removal of Load Balancers was implemented within an
External IP Controller. The algorithm used by the controller was designed to
run indefinitely. The application thread wakes up every 5 minutes to query the
Kubernetes API for all application instances. To create a Load Balancer for each
application instance, the controller needs to set marker labels on each instance.
Later, Kubernetes Services selects proper instances based on a Selector, where
the Selector query and marker labels need to match. Figure 5.6 presents the
algorithm in pseudo-code notation. The algorithm uses the Reconciler Pattern

1The code can be accessed using the following URL
https://github.com/infinispan/infinispan/pull/5164

65

Chapter 5. Proposed solution for exposing clustered applications deployed in the
cloud

1 while (true)
2 applicationInstances = queryPlatformForInstances()
3 for (applicationInstance : applicationInstances)
4 addMarkerLabels(applicationInstance)
5 ensureLoadBalancerIsRunning(applicationInstance)
6 removeUnnecessaryLoadBalancers()
7 sleep(5 min)

Figure 5.6: External IP Controller algorithm

[47], meaning it aggregates the current state of the system, assembles the desired
state and performs reconciliation.

The endless loop was implemented using while loop (Line #1). The
algorithm queries the platform (Kubernetes) for all Hotrod Server instances
(Pods). Next, it iterates over the set and adds proper marker labels (Lines
#4). Kubernetes platform uses Selectors that need to match objects with proper
Labels. Each application instance needs Labels matching Selector used on a
Load Balancer object. Line #5 is responsible for spinning Load Balancers up
and writing their External IP addresses into a local cache (this part was omitted
from the algorithm diagram). Finally, the algorithm removed all the redundant
Load Balancers (if any). The next loop starts after a 5 minute period.

5.3 Experiment environment description and tools used
for the evaluation

The experiments were performed in three stages - initial performance tests were
executed on a local laptop, validation tests were performed using Minikube project
[66] as well as on Google Compute Cloud.

The initial tests were performed on Intel R© CoreTM i7-4900MQ CPU @
2.80GHz, 16 GB RAM laptop using Linux OS (Fedora F23). All testing scenarios
were written in Java using JMH [77] tool (a micro-benchmark framework).

The validation tests were performed on a local laptop using Minikube project
that simulates a running cloud using Virtual Machines.

The final test were performed on Google Compute Engine (a Kubernetes cloud
maintained by Google) and on Google Compute Cloud (for benchmarking traffic
within the same data center).

66

Chapter 5. Proposed solution for exposing clustered applications deployed in the
cloud

Test description Short description Average value
[ms/op]

± Error

Topology aware client
inside Kubernetes with
Kubernetes internal
addresses

L3 + Kubernetes internal 1288.437 136.207

Topology aware client
inside Kubernetes with
Kubernetes Load Balancers

L3 + Kubernetes internal + LB 1461.510 64.33

Simple client inside
Kubernetes with
Kubernetes Load Balancers

L1 + Kubernetes internal + LB 2163.873 141.332

Topology aware client
inside the same data center
with Kubernetes Load
Balancers

L3 + Kubernetes external + LB 2465.586 85.034

Simple client inside the
same data center with
Kubernetes Load Balancers

L1 + Kubernetes external + LB 2684.984 114.993

Table 5.4: Benchmark results for performing 1.000 Put and Get operations

5.4 Experiments results

System benchmarks were established using topology-aware and a simple Hotrod
client. The topology-aware client uses consistent hash information for sending
each request to a specific server, whereas the simple client chooses a random
server from a specified connection list. Each test consists of sending 10 000
Put Operations (which means inserting 10 000 random strings into the data
grid) and 10 000 Put and Get Operations (where the Get Operation represents
getting a value previously inserted by a Put Operation). Each test was run 31
times and an error margin was calculated using a 99.9% confidence interval.
The results have been shown in Table 5.4 as well as in Figure 5.7. In each
diagram describing the experiments results, the vertical axis represents time in
milliseconds and each bar represents a values for a particular solution. The aim
of the test is to verify what is the overhead of using Load Balancers in cloud (by
comparing test results using topology-aware - ”L3 + Kubernetes internal“ and ”L3
+ Kubernetes internal + LB“). The next goal is to verify if using topology aware
client improves performance (by comparing ”L3 + Kubernetes internal + LB“ and
”L1 + Kubernetes internal + LB“). The final goal is to compare a system with and
without the proposed solution (by comparing ”L1 + Kubernetes external + LB“,
that represents the baseline, with ”L3 + Kubernetes external + LB“, that represents
the proposed solution).

67

Chapter 5. Proposed solution for exposing clustered applications deployed in the
cloud

Figure 5.7: Benchmark results for performing 1.000 Put and Get operations

L3 + Kubernetes
internal

L3 + Kubernetes
internal + LB

L1 + Kubernetes
internal + LB

L3 + Kubernetes
external + LB

L3 + Kubernetes internal + LB -4.307
L1 + Kubernetes internal + LB -36.182 -11.254
L3 + Kubernetes external + LB -39.018 -10.719 1.481
L1 + Kubernetes external + LB -16.288 -12.703 -7.96 31.4

Table 5.5: Significance measure matrix between benchmark results

Table 5.5 contains calculated significance measure between each tested pair
of benchmarks based on the procedure described in Section 3.8. For α = 0.05
(99%), the tested interval is equal to (−∞,−2.58 > ∪ < 2.58,∞). The
calculation results show that all the benchmark pairs, except ”L1 + Kubernetes
internal + LB“ and ”L3 + Kubernetes external + LB“ one, are statistically
significant.

5.5 Results analysis

Exposing services hosted within the cloud to external consumption is not very
popular, yet it is very useful for some use cases. Many cloud vendors have
sophisticated tools or templates that allow them to bootstrap such services very
quickly. Automatic auto scaling based on CPU and memory metrics, health
monitoring, and automatic backup management are only a few reasons why
hosting applications within the cloud is preferred by many development teams.
Many cloud vendors use Load Balancers and Reverse Proxies as the only way
of reaching services hosted within the cloud from the the outside world. Very
frequently, the process of provisioning Load Balancers is strictly connected to
creating new firewall or port forwarding rules. The downside of using Load
Balancers is that they are relatively expensive and very often charged on hourly
basis.

68

Chapter 5. Proposed solution for exposing clustered applications deployed in the
cloud

The network infrastructure maintained by cloud vendors is very often
optimized for using Load Balancers. Comparing "L3 + Kubernetes internal" and
"L3 + Kubernetes internal + LB" benchmark results from the Table 5.4 showed
only 13.43% lower throughput when sending data through a Load Balancer. The
binary proxy implementation achieved much worse results. Comparing "Perform
10 000 Put and Get Operations" with and without binary proxy from the Table 5.3,
resulted in 68.05% worse performance.

The communication performance degrades much further when using other
Virtual Machines within the same cloud offering (but not in the same container
cloud). An example in the benchmark used a Kubernetes cluster running on
a CentOS VM and a client application deployed in a separate VM instance.
Comparing benchmarks for a topology aware client ("L3 + Kubernetes external
+ LB" and "L3 + Kubernetes internal + LB") from the Table 5.4 showed
68.70% performance loss when the client is deployed in a separate VM instance.
Benchmarks for a client that does not use consistent hash-based routing the results
were much better and stabilized at 24.08% worse performance when the client is
deployed in a separate VM instance. The figures might significantly vary from
cloud vendor to cloud vendor, due to network optimizations used in the data
center.

The solution proposed in this thesis helps to achieve better throughput when
connecting a topology aware client to a cluster of servers deployed in the cloud.
Comparing ”L1 + Kubernetes internal + LB“ and ”L3 + Kubernetes internal + LB“
from Table 5.4 indicates over 30% increased overall communication performance.
The results for ”L1 + Kubernetes external + LB“ and ”L3 + Kubernetes external
+ LB“ represent less than 1% but it is worth mentioning that this includes latency
between Google data center and testing environment. In a typical scenario, the
link between the data grid client and the data grid cluster is expected to be much
faster.

From the transport encryption’s point of view, adding TLS resulted in the
30% worse performance. The performance penalty was a deciding factor to skip
the transport confidentiality aspect from this research. However, all the proposed
solutions allow TLS to be turned on.

5.6 Limitations

Allocating a separate Load Balancer per each application instance might be very
costly. A large data store system that consists of tens or even hundreds of
application instances, exchanging large amounts of data with client application
may result in very high operating costs. Table 6.1 contains pricing per allocating
Load Balancers in major public clouds.

69

Chapter 5. Proposed solution for exposing clustered applications deployed in the
cloud

The proposed solution adds a new component on top of the existing data store
system - External IP Controller. The controller is responsible for querying the
data grid for the list of internal IPs and collecting corresponding external IPs
(from Load Balancers). In most of the cases, this is a one-to-one mapping but
some cloud vendors use multiple external IPs (or domain names) corresponding
to a single Load Balancer (the Elastic Load Balancer exposes a separate IP per
each Availability Zone). This may lead to additional complexity in either data
grid client code or External IP Controller. It is also worth mentioning, that an
additional component needs to highly available and accessible for all the clients.

Recently, a new initiative for interconnecting clouds has been founded -
Submariner project [106]. Its aim is to allow communication between application
instances deployed in different sites. At the time of writing this thesis, the project
is in development stage but once it becomes stable, it will offer an easier way
of communicating data grid service and its client than presented in this thesis.
However, the use cases of communicating an external client with a data grid
system deployed in the cloud will still remain valid.

5.7 Further work

Even though the benchmark results look promising, there is still the need to
benchmark other scenarios (e.g. involving disk access) and different types of
services. Furthermore, this research did not investigate the security aspects
of the proposed approach. Exposing internal to external (and vice versa)
address mapping might be used as a potential attack vector. Some existing
implementations like Infinispan may mitigate this risk by putting address mapping
into the server. This way the client obtains an already-altered list of servers and is
not aware of any mapping process.

The approach presented in this thesis has been used as the foundation for
other improvements, such as Reliable Asynchronous Clustering [89] and Cross
Site Replication using Gossip Routers [104].

70

Chapter 6

Proposed solution for switching
communication protocols in the
cloud

6.1 Introduction

Modern application development trends show that Microservices Architecture
deployed on a container-based cloud gains popularity very quickly[56]. Services
in such a system often communicate with each other using the HTTP protocol and
REST interface [93]. Modern container-based cloud solutions, like Kubernetes
[55] or OpenShift [78] embrace that model and offer an intuitive way to build
large systems using the provided building blocks. One of the most important
platform components are Services, which represent an internal Load Balancers
and are implemented by the IPTables (also known as Netfilter [114]) project.
Routing traffic from the outside of the cloud is more complicated and can be
achieved using one of the two ways - exposing a Load Balancer (also known as
a Load Balancer Service) or adding a route to a publicly available router (also
called an Ingress of a Router, often implemented using HAProxy [43] or Nginx
[74]) [98]). Unfortunately, allocating a Load Balancer is often quite expensive, so
most developers focus on using the public router. This enforces the HTTP based
communication and offers little to none support for custom, binary protocols
based on TCP or UDP transports.

6.1.1 Network traffic in container-based clouds

Most of the on-premise data centers as well as public clouds use a standard routing
model, which consists of a Reverse Proxy, a Load Balancer and, one or many,
application instances (Figure6.1). A typical web application fits perfectly into

Chapter 6. Proposed solution for switching communication protocols in the cloud

Figure 6.1: A standard routing model in modern application deployments

Cloud Provider Cost
Amazon Web Services Elastic Load Balancer 0.025 USD per hour and

0.008 USD per GB
Google Cloud Platform Forwarding Rule 0.025 USD per hour and

0.008 USD per GB

Table 6.1: Load Balancer pricing by the biggest cloud vendors

this model. In most cases, an ingress traffic is generated by the end users who
use their desktop or mobile devices. Therefore, a Reverse Proxy is an HTTP
oriented component and offers only a limited set of capabilities for other network
protocols, such as high performance binary protocols based on TCP (or UDP)
transport. Some cloud vendors do not use the latest version of the Reverse Proxy
software and do not fully support the HTTP/2 protocol [45]. This makes achieving
decent performance in the cloud environment even more challenging.

Some of the cloud vendors allow users to allocate an externally reachable L4
Load Balancer (L4 is a transport layer of the OSI Model). Unfortunately, such
solutions are often quite expensive considering large scale systems. Table 6.1
contains a pricing model for an externally reachable Load Balancer provided by
major cloud vendors [11][40].

Adding a new route to an externally reachable Reverse Proxy is free of charge
in most cases. Presented solution allows application developers to optimize
costs by using a standard Reverse Proxy and increase the performance of their
applications by enabling custom, binary protocols.

6.1.2 Multiprotocol applications

There are two types of communication protocol switching mechanisms - the
HTTP/1.1 Upgrade procedure [92] and TLS/ALPN [96].

The HTTP/1.1 Upgrade procedure (sometimes called "clear text upgrade") is
often used when the client and the server communicate using unencrypted TCP

72

Chapter 6. Proposed solution for switching communication protocols in the cloud

Figure 6.2: HTTP/1.1 Upgrade flow [92]

connection. The procedure allows the client application to send an HTTP/1.1
message containing an "Upgrade" header to invite the server to switch the
communication protocol reusing the same TCP connection. The server may
ignore such a request or send an HTTP/1.1 101 status code (Switching Protocols)
and accept one of the proposed protocols by the client. After sending a HTTP/1.1
101 message, the server immediately switches to the new protocol reusing the
same TCP connection. Figure 6.2 shows an example of upgrading existing HTTP
connection to a custom Hotrod protocol.

It is also possible to encrypt the connection between a client and a server by
using the TLS protocol. Initiating an encrypted connection requires completing
handshake subprotocol (as described in Section 3.3). During the handshake,
the client and the server may use one of the TLS extension. The ALPN
extension (Application-Layer Protocol Negotiation) allows the client and the
server to negotiate communication protocol for the given TCP connection.
Figure 6.3 shows a simplified diagram of the TLS/ALPN communication protocol
negotiation.

Both the TLS/ALPN and HTTP/1.1 Upgrade procedure are commonly used
by web browsers and application servers to switch from HTTP/1.1 to HTTP/2.
However, it is also possible to switch into some other specified protocol - even a
custom binary one.

73

Chapter 6. Proposed solution for switching communication protocols in the cloud

Figure 6.3: TLS/ALPN flow [92]

6.2 Proposed solution for switching communication
protocols

The major contribution of this proposal is to design a new mechanism for
switching communication protocols and enabling a client and a server to switch
to a custom, binary protocol in the cloud. The proposed solution does not
require allocating a dedicated Load Balancer and allows to reuse a publicly
available cloud provider router. The mechanism has been tested using a public
cloud environment and the results are satisfactory.

Services hosted within the cloud are often allowed to use any communication
protocol. Most of the Open Source, container-based clouds use the SDN
technology (Software Defined Network) to address layer 3 routing (the network
layer of the OSI model). Therefore, the only limitation is to use IP-based routing
(TCP is often not a requirement and other transport protocols, such as UDP can
be used). Handling an ingress traffic in the cloud is often done by using an
edge component, a Load Balancer or a Reverse Proxy. A Reverse Proxy is a
component designed to handle the HTTP or TLS-encrypted traffic. An application
hosted in a container-based cloud can use a Reverse Proxy without additional
costs. Allocating a Load Balancer tied to an application very often requires
paying additional costs. Therefore, it is highly desirable that the proposed solution
should be capable of reusing a Reverse Proxy and not allocating a dedicated Load
Balancer. Another requirement for the proposed solution is encrypting the traffic
between the client and the server in order to protect sensitive and confidential
data. In case of transmitting such data over the wide open Internet, it is necessary
to protect the transport using the TLS protocol (described in Section 3.3). There

74

Chapter 6. Proposed solution for switching communication protocols in the cloud

Requirement priority
Switch to custom protocol Must have
Possible TLS encryption Must have

Simple client implementation Nice to have
Expose all protocols using one TCP port Nice to have

Table 6.2: Solution requirements.

are two additional lower-priority (nice-to-have) requirements for the proposed
solution. The first is the switching procedure, which could be implemented in
the client application side. The reason is to make it less error-prone. The second
is to expose all the protocols on one TCP port. This lowers the costs on the service
provider’s side since there is the need for only one route.

The Table 6.2 contains all the gathered requirements with priorities assigned.
There are two known ways of negotiating communication protocol between

a client and a server. The former is based on TLS/ALPN [96]. During the TLS
Handshake subprotocol, the client sends the custom binary protocol as the first
element of the TLS/ALPN protocol negotiation list. In most of the cases, the
list contains only one protocol supported by the client (one of the most common
exceptions is multi-protocol client applications; however, such application are
out of the scope of this research). If the server does not support the proposed
protocol, the connection is terminated. The latter solution is based on HTTP/1.1
Upgrade procedure [92] and can be used in all the situations where encryption is
not necessary. In this solution, the client application needs to be adjusted to send
an empty HTTP/1.1 GET request to the root context of the URL with an "upgrade"
header. The header is allowed to contain multiple values; however, in most of the
cases it will contain one element - the target binary protocol. The server might
ignore such a request and in that case, the client terminates the connection.

Both the HTTP/1.1 Upgrade and TLS/ALPN procedures allow switching to
a binary protocol and both of them allow to specify multiple protocols in the
request (either using the TLS/ALPN or HTTP/1.1 Upgrade). In most of the cases
TLS/ALPN is handled by the OpenSSL library, which supports this extension
from version 1.0.2 [80]. In case of Java Programming Language, TLS/ALPN
is supported from 11th edition (including LTS releases only). Implementing the
proposed solution in earlier versions requires overriding all the classes related
SSLContext and SSLEngine and manually handling the ALPN extension. The
HTTP/1.1 Upgrade procedure is much more complicated since it needs to be
implemented in the application level (rather than transport level). Adding a
mechanism for multiple HTTP round trips and switching to a custom, binary
protocol is often complicated, therefore it does not fulfill the "Simple client
implementation" requirement.

75

Chapter 6. Proposed solution for switching communication protocols in the cloud

1 Input: Inbound connection ic
2 Routing table rt
3 UpgradeHandler uh
4 CommunicationPipeline cp
5 Output: SinglePortUpgradeHandler rd
6

7 Protocol p = uh.negotiate(ic)
8 Handler h = rt.getHandler(p)
9 if (h == null)

10 h = rt.getHandler("HTTP/1.1")
11 cp.addHandler(h)

Figure 6.4: Protocol switching implementation pseudo-code

Based on the literature overview from Section 3.3 as well as the growing
popularity of inter-connected clouds (mentioned in Section 1.3), inventing a
solution for switching to custom, binary protocols that could be used free of
charge in a container-based cloud is highly desirable. Such a solution will offer
the best performance without forcing users to use the HTTP protocols.

The prototype has been implemented using Infinispan Open Source project.
Infinispan is an in-memory data store that offers many endpoint protocol
implementations, including HTTP/1.1, HTTP/2, Hotrod, Memcached and Web
Sockets. For the proof of concept implementation protocols were chosen -
HTTP/1.1, HTTP/2 and Hotrod. Both the server and the client implementation
has been done using Netty framework [73] and can be found in Infinispan ticket
system as well as on Github project 1. The algorithm is based on multi-tenancy
router implementation [97], which has been modified to perform both TLS/ALPN
negotiation and HTTP/1.1 Upgrade procedure. The router implementation
manages the communication pipeline (Netty communication is based on Events,
which are handled by Handlers within the communication pipeline; It is a "chain
of responsibility" design pattern) as well as a full list of supported protocols by
the server (which is managed in a routing table). The router requires at least
one REST server implementation to be added, because HTTP/1.1 is used as a
fallback protocol. A simplified algorithm implementation has been shown in the
Figure 6.4.

Lines from #1 to #4 represent input arguments for the proposed algorithm.
Since the implementation is based on multi-tenancy feature, they are similar to the
ones introduced in Chapter 4. Both TLS/ALPN and HTTP/1.1 Upgrade logic were
extracted into UpgradeHandler represented by uh variable. The mechanism
negotiates target communication protocol proposed by a client application (Line
#7) and applies it to the communication pipeline (Line #11). If none of the

1The ticket can be accessed using the following URL https://issues.jboss.org/browse/ISPN-8756

76

Chapter 6. Proposed solution for switching communication protocols in the cloud

communication protocols were chosen, the algorithm falls back to HTTP/1.1
(Line #9 and Line #10).

The algorithm’s complexity is proportional to the number of routes in the
routing table. Using a Big-O notation it might be written as T (n) = O(n).

6.3 Experiment environment description and tools used
for the evaluation

The experiments were performed in two stages - the initial performance tests were
executed on a local laptop and the validation tests were performed on OpenShift
3.11 cloud.

The initial tests were performed on Intel(R) Core(TM) i7-7600U CPU, 16 GB
of RAM laptop using Linux OS (Fedora F25). All testing scenarios were written
in Java using JMH [77] tool (a micro-benchmark framework).

The validation tests were performed using OpenShift 3.11 cloud deployed
on AWS. The system consisted of 3 Master nodes and 2 Worker nodes. Such a
system was initialized solely for running the switching protocol test. Most of the
background tasks were turned off to minimize interference with testing harness.

6.4 Experiments results

All the tests have been done using Java Hotrod client (an Infinispan client
library) and a custom implementation of the HTTP/1.1 and HTTP/2 clients (with
both TLS/ALPN as well as HTTP/1.1 Upgrade). In all the tests there has
been a singleton Infinispan Server instance deployed in the cloud and testing
harness communicating with the server using different clients and communication
paths. Tested configurations include direct communication without proposed
solution (scenarios, where ”Negotiation mechanism” is “None“) and with it (other
scenarios). The proposed solution was tested in multiple different configurations,
including:

• Using TLS/ALPN negotiation mechanism and switching to HTTP/2 or
Hotrod protocol

• Using HTTP/1.1 Upgrade procedure and switching to HTTP/2 or Hotrod
protocol

Additionally, all scenarios were validated using a Router component provided
by a cloud vendor (HAProxy) and using direct communication inside of the
cloud. The aim of the experiments is to measure the performance overhead
of each switching mechanism individually (”Connection type“ set to ”Direct“

77

Chapter 6. Proposed solution for switching communication protocols in the cloud

Negotiation mechanism Connection type Target protocol Iterations result [ms/op] ± Error

None Direct HTTP/1.1 31 2.068 0.686
None OCP Router HTTP/1.1 31 1.087 0.154

TLS/ALPN Direct HTTP/2 31 5.063 0.531
TLS/ALPN OCP Router HTTP/2 31 6.576 1.535

HTTP/1.1 Upgrade Direct HTTP/2 31 3.310 0.864
HTTP/1.1 Upgrade OCP Router HTTP/2 31 4.464 1.617

TLS/ALPN Direct Hotrod 31 9.742 1.102
TLS/ALPN OCP Router Hotrod 31 10.401 1.302

HTTP/1.1 Upgrade Direct Hotrod 31 5.389 1.067
HTTP/1.1 Upgrade OCP Router Hotrod 31 8.594 10.122

Table 6.3: Initialize connection results

Negotiation mechanism Connection type Target protocol Iterations result [ms/op] ± Error

None Direct HTTP/1.1 31 0.472 0.330
None OCP Router HTTP/1.1 31 1.315 0.781

TLS/ALPN Direct HTTP/2 31 1.577 0.282
TLS/ALPN OCP Router HTTP/2 31 2.149 0.480

HTTP/1.1 Upgrade Direct HTTP/2 31 1.048 0.078
HTTP/1.1 Upgrade OCP Router HTTP/2 31 1.156 0.078

TLS/ALPN Direct Hotrod 31 0.269 0.039
TLS/ALPN OCP Router Hotrod 31 0.331 0.048

HTTP/1.1 Upgrade Direct Hotrod 31 0.193 0.037
HTTP/1.1 Upgrade OCP Router Hotrod 31 0.255 0.051

Table 6.4: Uploading 360 bytes to the server results.

- this excludes passing network traffic though a Reverse Proxy and makes the
measurement results more stable). The next goal is to prove that is it possible to
use all switching mechanisms provided by the proposed solution with scenarios
involving Reverse Proxy (”Connection type“ set to ”OCP Router“). The final goal
is to measure, which switching mechanism is the most effective and introduces
the lest possible performance overhead.

The Table6.3 contains performance results for initiating connection and
switching to different protocols.

Table 6.4 and Table-6.5 contain performance results for sending 360 and 36
byte entries (as a key/value pairs) into the server. The results have been visualized
in Figure 6.4, Figure 6.6 and Figure 6.7. All the diagrams with the results use
similar notation, the vertical axis represents time in milliseconds and each bar
represents a particular solution.

Tables 6.7, 6.8, 6.9, 6.10, 6.12 and 6.11 contain calculated significance
measure between each tested pair of benchmarks based on the procedure described
in Section 3.8. For α = 0.05 (99%), the tested interval is equal to (−∞,−2.58 >
∪ < 2.58,∞). Benchmarks that are not statistically comparable were gathered in
Table 6.6.

78

Chapter 6. Proposed solution for switching communication protocols in the cloud

Negotiation mechanism Connection type Target protocol Iterations result [ms/op] ± Error

None Direct HTTP/1.1 31 0.426 0.337
None OCP Router HTTP/1.1 31 2.310 0.761

TLS/ALPN Direct HTTP/2 31 0.754 0.196
TLS/ALPN OCP Router HTTP/2 31 0.649 0.100

HTTP/1.1 Upgrade Direct HTTP/2 31 0.267 0.062
HTTP/1.1 Upgrade OCP Router HTTP/2 31 0.305 0.055

TLS/ALPN Direct Hotrod 31 0.267 0.062
TLS/ALPN OCP Router Hotrod 31 0.302 0.052

HTTP/1.1 Upgrade Direct Hotrod 31 0.231 0.065
HTTP/1.1 Upgrade OCP Router Hotrod 31 0.243 0.040

Table 6.5: Uploading 36 bytes to the server results.

Figure 6.5: Initialize connection results.

Test type Mode Benchmark 1 Benchmark 2

Initializing connections Direct TLS/ALPN (HTTP/2) HTTP/1.1 Upgrade (Hotrod)

Initializing connections OCP Router TLS/ALPN (HTTP/2) HTTP/1.1 Upgrade (Hotrod)
Initializing connections OCP Router HTTP/1.1 Upgrade (HTTP/2) HTTP/1.1 Upgrade (Hotrod)
Initializing connections OCP Router HTTP/1.1 Upgrade (Hotrod) None

Uploading 360 bytes Direct HTTP/1.1 Upgrade (Hotrod) None

Uploading 360 bytes OCP Router TLS/ALPN (HTTP/2) None

Uploading 36 bytes Direct HTTP/1.1 Upgrade (HTTP/2) TLS/ALPN (Hotrod)

Uploading 36 bytes OCP Router TLS/ALPN (HTTP/2) None
Uploading 36 bytes OCP Router HTTP/1.1 Upgrade (HTTP/2) TLS/ALPN (Hotrod)
Uploading 36 bytes OCP Router HTTP/1.1 Upgrade (HTTP/2) None
Uploading 36 bytes OCP Router TLS/ALPN (Hotrod) None
Uploading 36 bytes OCP Router HTTP/1.1 Upgrade (Hotrod) None

Table 6.6: Statistically insignificant benchmark comparisons

79

Chapter 6. Proposed solution for switching communication protocols in the cloud

Figure 6.6: Uploading 360 bytes to the server results.

Figure 6.7: Uploading 36 bytes to the server results.

80

Chapter 6. Proposed solution for switching communication protocols in the cloud

TLS/ALPN
(HTTP/2)

HTTP/1.1
Upgrade

(HTTP/2)

TLS/ALPN
(Hotrod)

HTTP/1.1
Upgrade
(Hotrod)

HTTP/1.1 Upgrade (HTTP/2) 4.45
TLS/ALPN (Hotrod) -9.85 -11.83
HTTP/1.1 Upgrade (Hotrod) -0.70 -3.90 7.31
None 8.89 2.90 15.23 6.74

Table 6.7: Significance measure matrix between benchmark results for initializing
connection in direct mode

TLS/ALPN
(HTTP/2)

HTTP/1.1
Upgrade

(HTTP/2)

TLS/ALPN
(Hotrod)

HTTP/1.1
Upgrade
(Hotrod)

HTTP/1.1 Upgrade (HTTP/2) 2.44
TLS/ALPN (Hotrod) -4.89 -7.37
HTTP/1.1 Upgrade (Hotrod) -0.50 -1.03 7.31
None 9.16 2.90 5.35 1.91

Table 6.8: Significance measure matrix between benchmark results for initializing
connection in OCP router mode

TLS/ALPN
(HTTP/2)

HTTP/1.1
Upgrade

(HTTP/2)

TLS/ALPN
(Hotrod)

HTTP/1.1
Upgrade
(Hotrod)

HTTP/1.1 Upgrade (HTTP/2) 4.66
TLS/ALPN (Hotrod) 11.83 23.01
HTTP/1.1 Upgrade (Hotrod) 12.53 25.51 7.31
None 6.65 4.37 3.64 -2.16

Table 6.9: Significance measure matrix between benchmark results for uploading
360 bytes to the server in direct mode

TLS/ALPN
(HTTP/2)

HTTP/1.1
Upgrade

(HTTP/2)

TLS/ALPN
(Hotrod)

HTTP/1.1
Upgrade
(Hotrod)

HTTP/1.1 Upgrade (HTTP/2) 5.26
TLS/ALPN (Hotrod) 9.70 23.20
HTTP/1.1 Upgrade (Hotrod) 10.11 25.51 24.90
None 2.34 -0.52 3.64 -3.49

Table 6.10: Significance measure matrix between benchmark results for uploading
360 bytes to the server in OCP router mode

81

Chapter 6. Proposed solution for switching communication protocols in the cloud

TLS/ALPN
(HTTP/2)

HTTP/1.1
Upgrade

(HTTP/2)

TLS/ALPN
(Hotrod)

HTTP/1.1
Upgrade
(Hotrod)

HTTP/1.1 Upgrade (HTTP/2) 7.76
TLS/ALPN (Hotrod) 7.93 0.10
HTTP/1.1 Upgrade (Hotrod) 9.71 25.51 32.34
None -5.57 -6.80 3.64 -6.99

Table 6.11: Significance measure matrix between benchmark results for uploading
36 bytes to the server in OCP router mode

TLS/ALPN
(HTTP/2)

HTTP/1.1
Upgrade

(HTTP/2)

TLS/ALPN
(Hotrod)

HTTP/1.1
Upgrade
(Hotrod)

HTTP/1.1 Upgrade (HTTP/2) 6.10
TLS/ALPN (Hotrod) 6.10 0
HTTP/1.1 Upgrade (Hotrod) 6.52 25.51 25.5
None 2.16 -1.19 -1.19 -1.46

Table 6.12: Significance measure matrix between benchmark results for uploading
36 bytes to the server in direct mode

6.5 Results analysis

Selecting network protocol for client/server communication in the cloud is not
a trivial topic. Each application and each development team has its own
requirements for the technology used in the project. Some of the commonly
used requirements have been gathered in Table-6.2. Most of the languages and
out of the box libraries provide support for the HTTP/1.1 protocol (some of
them also offer seamless upgrade to HTTP/2 but at the moment of writing the
prototype, most of the Java clients lack support for it), which was one of the major
contributing factor for its popularity among application and library developers.
However, in some scenarios, simplicity is not the deciding factor. Performance
or asynchronous processing allows to increase system performance and lower
operating costs at the same time (very often those two things are tied together
- better performance allows to decrease the number of application replicas and
lower the overall operational costs). In order to reduce costs even further, it is
highly advisable to use a publicly available cloud router instead of a dedicated,
often quite expensive, application Load Balancer. Such routers are often designed
with HTTP/1.1 and TLS in mind. Supporting custom protocols can be achieved
by encrypting the traffic or using HTTP/1.1 Upgrade procedure.

Table-6.3 and Figure 6.4 present the benchmark results for the time necessary
for initiating connection to an in-memory data store - Infinispan. The first
two rows (no switching mechanism and HTTP/1.1 used as a communication

82

Chapter 6. Proposed solution for switching communication protocols in the cloud

protocol) have been used as a baseline. Introducing a public router between the
testing harness and the server (connection type equal to "OCP Router") made
the connection initialization roughly 2 ms slower than without it. Each pair of
results presents a similar pattern - using the HTTP/1.1 Upgrade procedure is
slightly faster than TLS/ALPN. The worst result was observed for the Hotrod
Protocol (in TLS/ALPN mode), which performs its own handshake procedure
and exchanges server information during connection initialization. As the results
show, exchanging this information takes quite a long time (comparing to the other
measured protocols).

The next important benchmark is inserting 36 and 360-byte keys and values
into the in-memory store. As expected, in all the cases using unencrypted
connections was faster than the connections with TLS. The difference gets bigger
with larger payloads. This is also expected, since encrypted payloads are larger
than the unencrypted ones. The custom protocol used for testing performed more
than twice faster than HTTP/1.1. HTTP/2 performance was slightly lower than
Hotrod’s but it was still faster than HTTP/1.1. At this point, it is also worth
mentioning that the testing procedure was synchronous (the testing harness sent a
request to the server and waited for response). Both HTTP/2 and Hotrod protocols
support asynchronous processing and using it would make the performance gap
even larger.

The results show that using a custom, binary protocol is the best option to
achieve the high performance results. The proposed solution enables switching
mechanism for both encrypted and unencrypted scenarios. Without it, using
a custom, binary protocols would require either allocating an expensive Load
Balancer or encrypting the whole traffic (even when it is not necessary).
Benchmark results also indicate that a small slowdown during connection
initialization and switching to a custom binary protocol makes a large difference
in the overall data transfer performance. It is also worth mentioning that some
deployments do not allow introducing a data grid client dependency to the
application. In such cases, switching to HTTP/2, which is often available out
of the box in many languages is highly advisable. The HTTP/2 protocol is
considered as a middle ground between HTTP/1.1 text protocol and a custom,
binary protocol. The Table-6.5 shows some of the use cases with suggested
protocols and switching mechanisms. The table might be used as a guide for
introducing specific solutions into new or existing projects.

6.6 Limitations

TLS/ALPN RFC [92] allows negotiating communication protocol only during
the handshake procedure. Once the handshake finishes, there is no other way
to change the protocol other than reconnecting. HTTP/1.1 Upgrade procedure

83

Chapter 6. Proposed solution for switching communication protocols in the cloud

Use case Key deciding Factors
Protocol Switch

Mechanism Target Protocol

Transmitting sensitive data
at high speed

Performance
Encryption TLS/ALPN Custom, binary protocol

Transmitting public
at high speed Performance HTTP/1.1 Upgrade Custom, binary protocol

Occasionally send
short heartbeats

Fast connection
initialization HTTP/1.1 HTTP/1.1

Transmitting sensitive data
without new dependencies

No new dependencies
Encryption TLS/ALPN HTTP/2

Table 6.13: Use cases and recommendations.

[92] is more flexible in this matter - it allows initiating the switching procedure
anytime by either the client or the server. In order to support both options,
the implementation needs to follow the most limited switching mechanism -
TLS/ALPN and negotiate communication protocol only during the handshake.
For the same reason, it is also not possible to switch from a custom binary protocol
back to HTTP/2 or HTTP/1.1.

Another practical limitation is focusing solely on TCP transport with both
routing with a Reverse Proxy (a solution with a router) and client-server
communication. Using HTTP over UDP is also not a very common scenario (used
mainly for streaming data). From the in-memory store’s perspective, maintaining
a stateful connection between a client and a server has a lot of benefits from
the implementation’s perspective (e.g. sending notifications from the server to
the client about a finished transaction - a paradigm often used in asynchronous
or reactive programming model). Recent work on QUIC [48] (a multiplexted
transport protocol over UDP) and HTTP/3 [14] (HTTP over QUIC transport)
may result in better performance even compared to binary protocols. If so, many
projects (including reverse proxies and in-memory data stores) will require many
implementation changes.

6.7 Further work

Both research and implementation have been done using the Infinispan Open
Source project. At the moment of writing this thesis, the server implementation
has already been merged into the project, whereas the client part is still waiting to
be reviewed by the Infinispan Team. In the near future this work will be extended
to other server protocols such as Web Sockets or Memcached, and the results will
be compared. Another goal is to create a multi-protocol client implementation
which can switch communication protocols on demand. Such an implementation
allows to address very interesting use cases that require different connection
characteristics to perform different tasks. An example of such behavior is
transmitting a large amount of encrypted traffic along with small portions of public

84

Chapter 6. Proposed solution for switching communication protocols in the cloud

data. In that case, the client could use a TLS/ALPN encrypted Hotrod connection
along with HTTP/1.1 protocol.

85

Chapter 7

Proposed solution for automatic
detection of application
misconfiguration

7.1 Introduction

Recent reports show that application configuration, especially with the security
and performance aspects in mind, is one of the most important challenges in cloud
computing [105]. Configuration tuning of a large production system requires deep
knowledge of each individual project used in all the deployed components. A
recent survey mentioned over 30% of engagement requests for a large Posgresql
service company were for solving configuration issues and perform tuning [13].
A much higher percentage might be observed on community project mailing lists
or users forums, where Keycloak for example receives more than 20 queries for
configuration advice a month (Keycloak is a security-related project that uses
Infinispan very heavily) [69].

Helping users spot common configuration mistakes is not only a helpful idea
but it solves real problems by lowering the overall number of support cases and
allowing experienced support engineers to focus on complicated problems. At the
same time, this approach helps in tuning performance of a running system and
oftentimes makes the configuration more secure.

7.1.1 Machine Learning techniques for classification problems

Among other use cases (described in Section 3.4), Machine Learning turns out to
be very helpful when classifying a data point (also called an instance) to a certain
category (also called class).

Chapter 7. Proposed solution for automatic detection of application
misconfiguration

Predicted
Positive Negative

Actual Positive True Positives (TP) False Negatives (FN)
Negative False Positives (FP) True Negatives (TN)

Table 7.1: Model accuracy measures for classification

Figure 7.1: Decision Tree (1-level deep) [67]

Every classifier (a model capable of classifying a data point into a class) can
be accessed in terms of accuracy. Table 7.1 shows differences between commonly
used concepts of True/False Positives and True/False Negatives. Those concepts
are used for accessing model’s Accuracy and F1 metric described by Equation 7.1
and Equation 7.2.

Accuracy =
TP + TN

TP + TN + FN + FP
(7.1)

F1 =
2 ∗ TP

2 ∗ TP + FP + FN
(7.2)

Section 3.4 describes most commonly used techniques for classification,
including Logistics Regression or DNF-based approaches, many recent Machine
Learning competitions [118] have been won using Decision Trees (with Gradient
Boosting technique [124]). Tree-based methods segment the predictor space into
smaller regions using a method that allows to express prediction rules in a tree
data structure. The decision-making process can be divided into steps. Each step
makes the predictor space smaller. This process has been shown in Figure 7.1 and
Figure 7.2.

Classifying data into specific segment can be written formally by using R1 =
{X|height > 8} notation, however, a diagram is much more descriptive.

Training decision trees adjusts regions R1, ..., RJ to minimize RSS given by
the formula in Equation 7.3. Oftentimes, this split is done using binary splitting
and compensated by using other methods. A general algorithm for building a
decision tree has been described in Listing-7.3.

87

Chapter 7. Proposed solution for automatic detection of application
misconfiguration

Figure 7.2: Decision Tree (2-level deep) [67]

1. Use recursive binary splitting to grow a large tree on the training
data, stopping only when each terminal node has fewer than some
minimum number of observations.

2. Apply cost complexity pruning to the large tree in order to obtain
a sequence of best subtrees, as a function of α

3. Use K-fold cross-validation to choose α. That is,
divide the training o bservations into K folds.
For each k = 1, ...,K :

(a) Repeat Steps 1 and 2 on all but the kth fold of
the training data.

(b) Evaluate the mean squared prediction error on the data
in the left-out kth fold, as a function of α.

Average the results for each value of α, and pick
α to minimize the average error.

4. Return the subtree from Step 2 that corresponds to the
chosen valueof α.

Figure 7.3: Building a decision tree algorithm [33]

J∑
j=1

∑
i∈Rj

(yi − ˆyRj)
2 (7.3)

Building a classification tree is very similar to building a regression tree. The
only difference is using a qualitative rather than quantitative output. This implies
that RSS cannot be used for making the split decisions while building the tree.
In practice, there are two measures very frequently used for growing a tree -
Gini index (Equation 7.4) and Entropy 1 (Equation 7.5). Here p̂mk represents
the proportion of training observations in the mth region that are from the kth
class.

1Entropy can also be perceived (from practical perspective) as a measure of chaos in the system

88

Chapter 7. Proposed solution for automatic detection of application
misconfiguration

G =
K∑
k=1

p̂mk(1− p̂mk) (7.4)

D = −
K∑
k=1

p̂mklog − p̂mk (7.5)

Reducing the amount of entropy is formally called Information Gain and can
be calculated using Equation 7.6. Parameter Q describes information gain by
making a specific split in the tree, k is the number of groups after the split, Ni is
number of objects from the sample in which variable Q is equal to the i-th value
[117].

IG(Q) = D0 −
K∑
k=1

Ni

N
Di (7.6)

There are many algorithms describing how to build the decision tree.
The simplest ones are maximizing Information Gain performed by the splits
(depending on one or many factors).

From practical perspective, decision trees have the following properties:

1. Data does not require normalization

2. Can easily be explained to people using a graph

3. Cannot predict values outside of the training data range

7.1.2 Operator Framework

Modern container-based clouds, such as Kubernetes or OpenShift, use Event
Driven Architecture in its controller components (more on container-based cloud
architecture might be found i Section 1.2). This approach allows decoupling an
event store from the controller code that reacts on specific events. A typical
Kubernetes Master Node runs an API Server connected to the data store - Ectd
(a key-value based data store). All other components of the system are allowed
to communicate only with the API Server. Kubernetes uses Controllers to react
on changing state of the objects in the API Server. Typically, a notification
mechanism (called ”Watch“) is used for it.

From the implementation perspective, Operators [81] allow developers to
create their own data type, that will be available through the API Server (and
stored in the data store) and write their own Controllers. The most basic
implementation leverages Watch mechanism and reacts on changes to a custom
resource.

89

Chapter 7. Proposed solution for automatic detection of application
misconfiguration

The goal seeking behavior of the control loop is very stable.
This has been proven in Kubernetes where we have had bugs that
have gone unnoticed because the control loop is fundamentally
stable and will correct itself over time.

If you are edge triggered you run risk of compromising your
state and never being able to re-create the state. If you are
level triggered the pattern is very forgiving, and allows
room for components not behaving as they should to be rectified.
This is what makes Kubernetes work so well.

Figure 7.4: Explanation of level-based and edge-based events by Joe Beda, CTO
of Heptio [47]

The authors of the Operator SDK made an interesting design decision - events
are triggered as level-based, opposed to edge-based (more explanation might be
found in Listing 7.4). This means, an event is not propagated to a Controller. A
Controller needs to re-considerate the whole current system state and react to it
[28]. This approach is also referred to as Reconciler Pattern [47]. Fundamentally,
the Reconciler Pattern is very simple and can be divided into three steps:

1. Get current system state

2. Get desired system state

3. Perform a set of actions, so that the current system state matches the desired
system state

From the conceptual perspective, Operators allow software vendors to
automate management of their software in a cloud. Typical management
operations involve:

• Automatic installation of the software

• Configuration management

• Automatic software upgrades (with no downtime if possible)

• Creating automatic backups and restoring them if necessary

• Integrating with monitoring and log collection stacks

• Horizontal and vertical auto-scaling

• Abnormal behavior detection

90

Chapter 7. Proposed solution for automatic detection of application
misconfiguration

Figure 7.5: Operator Capability Model [109]

Depending on the provided capabilities, Operators are divided into ”Phases“
(Figure 7.5). The widest support is available when an Operator is designed
using Go Language (the same that has been used to create both Kubernetes and
OpenShift).

Operators created by different communities are gathered in a single place,
called OperatorHub. The service has been launched by Red Hat in conjunction
with Amazon, Microsoft, and Google. At the moment of writing this paragraph,
there are 91 Operators that can manage different kind of software in a Kubernetes
(or OpenShift) cluster - starting from Data bases (such as Postgresql) or providing
more sophisticated application, such as Keycloak - OpenID Connect Server 2.
Current web site of the OperatorHub service has been presented in Figure 7.6.

7.1.3 NoOps initiative

Social Media focused on IT industry built large interest in no-operations (NoOps)
initiative. This has been summarized in an article written by Adrian Cockcroft [7].
The term describes the way developers have worked at Netflix (even though the
article describes the status of 2012, it is still up to date). In 2007, Netflix streaming
services were still experimental. As many traditional companies, Netflix had an
operations team responsible for keeping data center infrastructure running. Back
then, the team was constantly overwhelmed by the day to day duties. Netflix as
one of the first companies decided to move their entire infrastructure to Amazon
AWS cloud and delegated most of the large-scale problems to the Amazon’s cloud

2The major part of Keycloak Operator has been implemented by the author of this thesis -
https://github.com/keycloak/keycloak-operator

91

Chapter 7. Proposed solution for automatic detection of application
misconfiguration

Figure 7.6: Front page of the OperatorHub service

team (which has dedicated people and much more knowledge on how to keep
things running at scale). This allowed Netflix to remove most of the operations
team and delegate the day to day duties to the development teams.

The NoOps initiative has a lot in common with the Operator approach;
however, the Operators take it one step further and automate most of the day to day
administration and operation duties. Furthermore, abnormal behavior detection or
automatic auto-scaling allows infrastructure to adjust to changing conditions [63].

7.1.4 Modern expert and recommendation systems implementations

Based on literature overview (from Section 3.6) and practical experience, expert
systems require a problem description, that may consists of many different
artifacts and an evaluation engine to produce an output. Depending on the
knowledge base system design, such a problem description may consists of (but
is not limited to):

• Problem description

• Runtime environment

• Different type of constraints

The most typical approach to expert system evaluation engine is to use a Rules
Engine (such as Drools project [26]). A typical rule may be represented as an ”if

92

Chapter 7. Proposed solution for automatic detection of application
misconfiguration

- then“ statement. Knowledge Base System typically contains hundreds (or even
thousands) of such rules. Another approach is to use Statistical and Machine
Learning. Finally, there are prototypes that leverage both these approaches
[88]. The former approach (rule-based) represents more practical approach to
the problem. In most of the cases, it is possible to adjust knowledge base rules to
match a particular problem. The latter approach (statistical/Machine Learning) is
by far more interesting.

In 1989 researches [125] noticed the potential of using Artificial Intelligence
in expert system design. Their findings focused on learning from examples
(referred to as Learning From Multiple Examples - LFME). The authors created
two datasets with positive and negative examples, where negative ones were used
to exclude given hypothesis from consideration. The next step in the process
involved the conceptual clustering approach where the system aggregated a set
of instances into classes of instances. Today, both techniques are referred to as
Supervised and Unsupervised training. Conceptually, this research is very similar
to the one presented in Section 3.7.

A hybrid approach (rule-based along with Machine Learning) might
be observed in a similar category of systems - recommender systems (or
recommendation engines). Recommender systems are the software tools used
to generate and provide suggestions for items and other entities to the users by
exploiting various strategies [27]. Typically, all recommender systems employ
one or more recommendation strategies:

• Collaborative Filtering - people who had similar tastes in the past will also
have similar tastes in the future

• Content-Based Filtering - people who liked items with certain attributes in
the past, will like the same kind of items in the future as well

• Demographic Filtering - uses demographic data such as age, gender,
education, etc.

• Knowledge-Based Filtering - users and items to reason about what items
meet the users’ requirements, and generate recommendations accordingly

It goes without saying, that Machine Learning techniques fit perfectly into
most of the filtering categories.

7.1.5 Available metrics for prototype evaluation

The prototype evaluation is based on a small portion of metrics available through
Infinispan metrics endpoint along with extracted parameters from configuration.
Table 7.2 shows all the metrics and configuration values used for the prototype. A
full list of metrics might be found the Appendix (Section 10.1).

93

Chapter 7. Proposed solution for automatic detection of application
misconfiguration

Metric name Metric value Metric type Description
up 1 Runtime 1 if the service is running, 0 otherwise
jgroups_kube_ping_count 0 Configuration The number of discovered KUBE_PING

discovery protocols
jgroups_dns_ping_count 0 Configuration The number of discovered DNS_PING

discovery protocols
cluster_lock_timeout 60000 Configuration Cluster lock timeout [ms]
jvm_threads_current 170 Metric The number of threads used by Infinispan

Server

Table 7.2: Metrics used for prototype evaluation

7.2 Proposed solution for automatic detection of
application misconfiguration

The major contribution of this proposal design is a solution for automatic
detection of application misconfiguration in a container-based cloud
environment. This solution has been tested using a dedicated testing
environment and the results are satisfactory

Many researchers and commercial companies, including Magalix 3 or Red Hat
Artificial Intelligence Center of Excellence 4, have been working on optimizing
workload in the cloud. Most of the work is focused on optimizing cloud
infrastructure and cloud components for performance (or the lowest latency) but
none of them deals with application-level configuration. There are many technical
difficulties to do that, including:

• Different configuration formats

• Lack of training environment

• Lack of a standard infrastructure gathering metrics

• Different deployment scenarios in companies

Operator initiative improves this situation a lot. Custom resources and unified
API Server access in Kubernetes create a nice and clean interface for configuring
applications hosted in the cloud. On the one hand, vendors allow certain level
of configuration to be set in provided Custom Resource Definitions [21], on the
other hand, there is a standard way of modifying them (using Kubernetes API
Server REST interface). Operators also have access to the application log and
metric collection infrastructure hosted in the cloud. There are ways to limit this

3https://www.magalix.com/
4https://github.com/AICoE

94

Chapter 7. Proposed solution for automatic detection of application
misconfiguration

Solution Priority
Discover common configuration mistakes Must-have

Solutions are easy to explain Must-have
Simple deployment Good-to-have

Table 7.3: Requirements for proposed solution

Figure 7.7: Expert system high-level design

access but, from practical reasons, it is a very uncommon thing to do. Typically,
the metrics are collected using Prometheus project [85] and rendered to the users
using dashboards. An Operator can also execute a query against Prometheus and
gather all the collected metrics if necessary.

Apart from supporting this thesis aims, a solution needs to meet secondary
goals, that have been gathered in Table 7.3. The most important goal is to discover
common configuration mistakes and suggest the actions to fix them. It is also
important that the decision process could be explained in a graphical form, since
in most of the cases, the action reports will be read by well trained specialists
team, such as project maintainers or Red Hat Support Team. The secondary goals
require the project to be deployed in a simple way.

A high-level design for the proposed solution has been presented in Figure 7.7.
An Intelligent Operator reads application runtime metrics from Prometheus and
gathers application configuration from a Custom Resource Definition exposed
by the API Server. It it worth mentioning that this proposal does not modify
any Custom Resources. This responsibility lies on the human operator’s side.
Once a configuration is changed, Kubernetes Controllers (implemented in the
Application Operator) react to the change and modify an application. Each
application instance (represented by Keycloak or Infinispan logo in the diagram)
reports its metrics back to Prometheus.

95

Chapter 7. Proposed solution for automatic detection of application
misconfiguration

up jgroups_kube_ping_count ACTION
1 0 There is no KUBE_PING configuration and yet, we are

running in Kubernetes

Table 7.4: Knowledge Base for detecting misconfigured discovery protocol

Clustering is one of the most frequently mentioned configuration issue
among both the community project maintainers and Red Hat Support Team
members. Both teams are overwhelmed by requests from clients seeking help
with fixing common configuration mistakes, such as member discovery protocol
configuration. Customers try to use protocols designed for the in-house data
centers, such as TCPPING or MPING (both are part of JGroups project) instead
of using KUBE_PING or DNS_PING. This configuration mistake can easily be
spotted by using Machine Learning and inspecting application configuration.

Intelligent Operator uses a Knowledge Base (written as a spreadsheet) with
wrong configuration examples (similarly to [125]) that is typically maintained
by project community members and Red Hat Support Team. Columns in the
spreadsheet represent metrics obtained from Prometheus as well as the parsed
configuration properties. The last column is the recommended action, where
the experts suggest how to fix the problem. A very simplified example of a
Knowledge Base spreadsheet has been presented in Table 7.4. The example
indicates that the application is running (”up“ metric is equal to 1) and there is
no KUBE_PING present in the configuration (”jgroups_kube_ping_count“ is 0).

Finding a proper action depending on metrics is a typical classification
problem. Instead of a class, a classifier needs to find the proper action. Assuming
a Knowledge Base spreadsheet might be treated as training data, a classifier
will only be interested in discovering actions (classes) it has seen before (as
mentioned in Section 7.1.1, this is a limitation of tree-based classifiers). Having
this requirements in mind, a simple decision tree classifier is perfect for this
solution.

Intelligent Operator’s main control loop is triggered using both the timer and
the watch of a custom resource. Every run is being called an Observation Period
and consists of several steps (shown in Figure 7.8):

1. Gather metrics - querying Prometheus for getting all the possible metrics

2. Build Knowledge Base - parsing configuration and adding them thus
combining it with the metrics

3. DecisionTreeClassifier - training decision tree classifier

4. Recommend optimizations - finding proper action

96

Chapter 7. Proposed solution for automatic detection of application
misconfiguration

Figure 7.8: Expert system pipeline

cluster_lock_timeout ACTION
metrics.filter(like=’infinispan-app’,
axis=0).loc[:,’connector_replication_timeout’][0]

Cluster lock is too small

Table 7.5: Cluster lock configuration example

Combining both application configuration and metrics in the same Knowledge
Base allows to mix both things together. One of the interesting examples is
cluster lock timeout. Since it relies on replicating internal configuration cache
in Infinispan, it needs to take replication timeout into consideration. This is a
typical example, where deep project knowledge is required to come up with proper
configuration. This example has been presented in Table 7.5.

The solution proposed in this paragraph has been used for filing 3 United
States Patents with Red Hat affiliation. More information can be found in
Section 2.1.

7.3 Experiment environment description and tools used
for the evaluation

The experiments were performed in a single stage using OpenShift 4.1 cloud
deployed on AWS. The system consisted of 3 Master nodes and 6 Worker nodes.
Such a system was initialized solely for running the switching protocol test. Most
of the background tasks were turned off to minimize interference with testing
harness.

97

Chapter 7. Proposed solution for automatic detection of application
misconfiguration

Most of the Intelligent Operator prototype has been implemented using
Jupyter Lab 5 environment and rewritten into an Operator. Even though it is
unusual to call Python code from Golang, scikit-learn package contains all the
Machine Learning models required for the evaluation. All metrics and tests were
performed against Infinispan Open Source project.

7.4 Experiments results

The aim of the experiment is to verify if the prototype implemented for verifying
the proposed solution properly recognizes misconfigurations in a tested system.

The prototype used a simplified version of Knowledge Base stored in a
spreadsheet. Its content has been presented in Table 7.6. Later on, the Operator
parses cell by cell and either puts a defaults obtained from metrics or evaluates
the expression inside each individual cell. Parsing results have been summarized
in Table 7.7.

During the next step, the Operators trains ”DecisionTreeClassifier“ from
scikit-learn package (a Tree-based classifier). Training outcome has been
presented in a form of a graph in Figure 7.9. The final step is to predict an action
based on metrics and configuration and print it to the standard system output.

The Accuracy for training set of the tree is 1. This indicated that the whole
training set was stored into the model.

7.5 Results analysis

Intelligent Operator concept implementation in Python and Golang resulted in a
clean and modular code. The approach of combining two programming languages
in a single project worked very well for the prototype implementation.

The proposal helps both the community members as well as Red Hat Support
Team in addressing most common configuration mistakes on customer site. The
prototype has also been successfully used by the Solution Architects Team who
install data grid system on the customer’s site. It is also worth mentioning, that
the solution works in the offline mode, which means it does not connect to a
centralized server to produce a recommendation to improve the deployed system
configuration.

The model used for the prototype correctly returned the actions based on
the observed metrics and tested configurations. However, the way of writing
wrong configuration examples into the Knowledge Base (the spreadsheet) is a
bit unusual. It requires writing a few examples to get used to it.

5https://jupyter.org/

98

Chapter 7. Proposed solution for automatic detection of application
misconfiguration

up
jg

ro
up

s_
ku

be
_p

in
g_

co
un

t
jg

ro
up

s_
dn

s_
pi

ng
_c

ou
nt

cl
us

te
r_

lo
ck

_t
im

eo
ut

jv
m

_t
hr

ea
ds

_c
ur

re
nt

A
C

T
IO

N
0

0.
00

0
na

n
na

n
N

aN
na

n
T

he
se

rv
ic

e
is

do
w

n.
Pl

ea
se

m
ak

e
su

re
it’

s
ru

nn
in

g
1

na
n

0.
00

0
na

n
N

aN
na

n
T

he
re

is
no

K
U

B
E

_P
IN

G
co

nfi
gu

ra
tio

n
an

d
ye

t,
w

e
ar

e
ru

nn
in

g
in

K
ub

er
ne

te
s

2
na

n
na

n
0.

00
0

N
aN

na
n

T
he

re
is

no
D

N
S_

PI
N

G
co

nfi
gu

ra
tio

n
an

d
ye

t,
w

e
ar

e
ru

nn
in

g
in

K
ub

er
ne

te
s

3
na

n
na

n
na

n
m

et
ri

cs
.fi

lte
r(

lik
e=

’i
nfi

ni
sp

an
-a

pp
’,a

xi
s=

0)
.lo

c[
:,’

co
nn

ec
to

r_
re

pl
ic

at
io

n_
tim

eo
ut

’]
[0

]
na

n
C

lu
st

er
lo

ck
is

to
o

sm
al

l
4

na
n

na
n

na
n

N
aN

20
0.

00
0

L
ow

er
th

e
nu

m
be

r
of

w
or

ke
rt

hr
ea

ds

Ta
bl

e
7.

6:
R

aw
K

no
w

le
dg

e
B

as
e

fo
rI

nt
el

lig
en

tO
pe

ra
to

r

99

Chapter 7. Proposed solution for automatic detection of application
misconfiguration

up
jg

ro
up

s_
ku

be
_p

in
g_

co
un

t
jg

ro
up

s_
dn

s_
pi

ng
_c

ou
nt

cl
us

te
r_

lo
ck

_t
im

eo
ut

jv
m

_t
hr

ea
ds

_c
ur

re
nt

A
C

T
IO

N
A

C
T

IO
N

_E
N

C
O

D
E

D
0

0.
00

0
1.

00
0

0.
00

0
60

00
0

17
0.

88
9

T
he

se
rv

ic
e

is
do

w
n.

Pl
ea

se
m

ak
e

su
re

it’
s

ru
nn

in
g

0

1
1.

00
0

0.
00

0
0.

00
0

60
00

0
17

0.
88

9
T

he
re

is
no

K
U

B
E

_P
IN

G
co

nfi
gu

ra
tio

n
an

d
ye

t,
w

e
ar

e
ru

nn
in

g
in

K
ub

er
ne

te
s

1

2
1.

00
0

1.
00

0
0.

00
0

60
00

0
17

0.
88

9
T

he
re

is
no

D
N

S_
PI

N
G

co
nfi

gu
ra

tio
n

an
d

ye
t,

w
e

ar
e

ru
nn

in
g

in
K

ub
er

ne
te

s

2

3
1.

00
0

1.
00

0
0.

00
0

50
00

17
0.

88
9

C
lu

st
er

lo
ck

is
to

o
sm

al
l

3
4

1.
00

0
1.

00
0

0.
00

0
60

00
0

20
0.

00
0

L
ow

er
th

e
nu

m
be

r
of

w
or

ke
rt

hr
ea

ds
4

Ta
bl

e
7.

7:
Pa

rs
ed

K
no

w
le

dg
e

B
as

e
fo

rI
nt

el
lig

en
tO

pe
ra

to
r

100

Chapter 7. Proposed solution for automatic detection of application
misconfiguration

Figure 7.9: Decision boundaries of a Decision Tree Classifier

101

Chapter 7. Proposed solution for automatic detection of application
misconfiguration

Figure 7.10: Decision boundaries of a Decision Tree Classifier (Entropy)

Decision boundaries or decision graphs generated for Decision Tree Classifier
[103] can easily be explained by human eyes (Figure 7.9). The classifier used for
the experiment used Gini index by default but this can be easily altered to use
entropy (Figure 7.10). The switch however, did not affect the number of nodes in
the tree.

Even though, the impact of the proposed solution on thesis’ aims is less
significant than other proposals’, it plays a very important role in maintaining a
healthy and efficient runtime configuration. Adjusting send and receive buffer
sizes as well as adjusting the data container’s size along with its eviction
and expiration parameters helps in achieving the best performance results and
lowering the memory footprint of the server.

7.5.1 Limitations

The proposed solution has been verified as a proof of concept. It does not meet
commercial quality level and its implementation would need to be improved at all
layers.

Parsing application level configuration files require supporting multiple file
formats, including JSON, YAML, XML or properties files. The presented solution
supports only XML files and parses them using XPath expressions. This approach

102

Chapter 7. Proposed solution for automatic detection of application
misconfiguration

needs to be changed in order to support all the file formats and different expression
language should be chosen or invested.

The prototype uses a spreadsheet file as a knowledge base container. In
order to make the project usable in the real world scenarios, this approach
would probably need to improved. All companies with large Support Department
(like Red Hat) use dedicated software modules to maintain communication with
external customers and collect a set of known solutions to specific problems.
The prototype should connect to those data sources and convert support cases
to knowledge base entries automatically.

7.5.2 Future work

Intelligent Operator proposal is the first step towards implementing a fully
automatic solution for finding, fixing and tuning the application configuration
automatically.

During each new release of a software, vendors perform a full end to end and
performance testing of their software. During the product testing phase, software
is deployed on a dedicated cloud. All known and tested product configurations
need to pass certain tests. This is a perfect opportunity to gather both the
metrics and configurations to train the Machine Learning model. Later on, such a
model can be deployed on a customer’s site and automatically fix the encountered
problems. This solution was called ”Secure detection and correction of inefficient
application configurations” and has been filed as the United States Patent Request
(more information can be found in Section 2.1). The main program loop has
been summarized in Figure 7.11. The Train period takes place during the product
testing phase in a performance laboratory. During this time, the Operator collects
all configuration samples and gathers performance metrics using the pre-defined
Key Performance Metrics obtained from a product team. In some scenarios
this can be throughput or latency but other metrics might be used as well. The
obtained metrics are used to train the Machine Learning model. Once the training
is finished, the model is stored into a file and used in Observation periods on a
customer’s site. During this time, the model observes metrics and tries to predict
the best matching configuration observed during the testing period. The model
can only predict tested configuration from performance laboratory. Therefore, it
follows best known practices and configurations.

One of the most important drawbacks of “Secure detection and correction
of inefficient application configurations” is that it needs a training period in
a laboratory. However, it is possible to treat the customer site as a training
period. This approach makes a lot of sense for Kubernetes clusters hosted
by a vendor for multiple clients. Common examples of such configurations
are OpenShift Dedicated, Google Cloud Engine or Tectonic. With this, very

103

Chapter 7. Proposed solution for automatic detection of application
misconfiguration

Figure 7.11: Secure detection and correction of inefficient application
configurations pipeline

specific setup, cloud vendors (and their infrastructure services) have access to all
customer deployments. This allows to create another solution - “AI configuration
management advisor”. This approach does not require the training period and
can be implemented in a product agnostic way. The main controller loop has
been shown in Figure 7.12. The Operator requires the product teams to define
Key Performance Metrics and Configuration Parameter Space. The former is
used for training the model and comparing configurations between each other.
The Operator is allowed to perform experiments with application configuration
- change blindly parameters and observe how Key Performance Metrics react to
it. This approach needs to be constrained by declaring Configuration Parameter
Space. The idea is to define the allowed values for certain parameters (e.g.
changing Infinispan Cache type between “replicated” and “distributed” and not
allowing changing to “local”). The Operator keeps track of all the measured
configurations and all previously tried configuration parameters.

The most interesting aspect of this solution is that it can work hand-in-hand
with human operator (from operations team). Since the Operator keeps track
of all the configuration changes - it can learn based on the human-generated
configuration examples.

Intelligent Operator prototype is far from being finished. The tool has been
designed to solve real problems by helping users as well as community project
maintainers and Red Hat Support Team. At the time or writing this paragraph,
there is ongoing discussion if such a tool is needed and whether the scope should
be extended to a commercial product.

The idea might be also integrated with the Open Data Hub initiative [76] but
this path has not been investigated.

104

Chapter 7. Proposed solution for automatic detection of application
misconfiguration

Figure 7.12: AI configuration management adviser pipeline

105

Chapter 8

Conclusions

The list below presents the most important outcomes of the research focusing on
innovative ideas and their practical aspects:

• The thesis statement has been positively verified. It has been proven that
it is possible to improve communication performance, defined by either
throughput or latency, by using new solutions and algorithms for protocol
negotiation and client side load balancing between a client application and
a service deployed in the cloud.

• The following methods and algorithms have been designed to meet the aims
of the thesis:

– The server memory footprint was lowered by introducing
multi-tenancy support for Infinispan Server. Individual clients
are recognized by analyzing the TLS/SNI Hostname field (which is
not encrypted) and authenticated by using a X509 Certificate. This
approach makes sure each client can only access their own data (and
not other clients’ - tenants’). At the same time, TLS/SNI can be
used by a router in the cloud, allowing a client to connect to a data
grid from the outside world. This work has been positively reviewed
by Infinispan community and integrated into both Infinispan Open
Source project and Red Hat Data Grid product.

– Communication performance has been improved by enabling client
side load balancing using multiple Load Balancers in front of a service
deployed in the cloud. Even though this solution had positive reviews
from the academic community, Infinispan project members decided
to reject it as it required running a third-party component apart from
the server. However, it has been used as the foundation for building
cross-site replication feature for the clouds.

Chapter 8. Conclusions

– Overall communication performance between a server deployed in the
cloud and a client from outside of the cloud has been improved by
enabling custom binary protocols to be used in a typical public cloud
scenario. The proposed method uses both the TLS/ALPN protocol
negotiation as well as HTTP/1.1 Upgrade procedure to reuse the
same transport connection and switch to the fastest possible protocol.
The proposed solution has been positively reviewed by the Infinispan
community and has been enabled as a default connection negotiation
method in Infinispan 10 series.

– An expert system has been proposed to help users to fix common
configuration mistakes. The solution has been built on top of Operator
concepts for the cloud. The idea has been turned into three United
States Patents and has the potential to be turned into a community
project or even into a commercial product.

Many solutions presented in this thesis have practical impact. Some of them
were integrated into main source code repository and have been improved since
then. This proves they solve real problems encountered by the users.

Intelligent Operator concept has a lot of potential in it. Even though it has
been proven to work as a proof of concept, it has the potential to become a fully
autonomic, configuration management and tuning system.

107

Chapter 9

Glossary

• (to) backport - Copy given functionality from an open-source project (called
also upstream in this context) to a commercial product. A common example
is the multi-tenancy feature, which was created for Infinispan project
(upstream) and was backported to the Red Hat Data Grid product.

• Container image - An immutable file, typically containing an application
with its dependent libraries and an Operating System, that can run an
isolated process on a host machine (typically as a Linux process). An image
is usually built using Docker Daemon or project Buildah.

• Docker container - See Linux Container.

• Ectd - A key-value based data store.

• (Amazon) EC2 - a public cloud offering by Amazon.

• GCE - Google Container Engine - a public Kubernetes offering from
Google.

• GCP - Google Compute Cloud - a public cloud offering from Google.

• Greenfield project - a new project that starts up.

• Kubernetes - An Open Source, container-based cloud.

• Linux container - A running Container Image on a host machine.

• LXC - Linux Container project.

• MCDM - Multiple Criteria Decision Making.

• Microservice - A small, isolated piece of software designed to operate
within a larger system.

Chapter 9. Glossary

• Multi-tenancy - designing the system in such a way, so that it can be used
by multiple users without sharing their data.

• MSE - Mean Square Error.

• OpenShift - a public cloud offering from Red Hat.

• RSE - Residual Standard Error.

• TLS - Transport Layer Security - a common name for encryption protocol.

• TLS/ALPN - Application Level Protocol Negotiation extension for TLS.

• TLS/SNI - Service Name Indication extension for TLS.

• VM - A Virtual Machine.

• Xen - A virtualization hypervisor.

109

Chapter 10

Appendix

This paragraph contains additional materials used for investigating and
implementing solutions proposed in this thesis.

Method name Metric description Metric example Type Notes
String getCacheStatus Returns the cache status RUNNING Informative
String getCacheAvailability Returns the cache availability AVAILABLE Health
String isRebalancingEnabled Returns whether cache rebalancing is enabled true Informative
String getCacheName Returns the cache name default(local) Informative
String getVersion Returns the version of Infinispan 10.0.0-SNAPSHOT Informative
Properties getConfigurationAsProperties Returns the cache configuration in form of properties (Java properties) Informative
long getInvalidations Number of invalidations 10 Performance
boolean getStatisticsEnabled Statistics enabled TRUE Informative
long getTotalBytesWritten() Number of total number of bytes written 80 Performance
long getTotalBytesRead() Number of total number of bytes read 203 Performance
String getHostName() Host name localhost Informative
int getPort() Port 8080 Informative
int getNumberIOThreads() Number of I/O threads 8 Performance
int getIdleTimeout() Idle timeout -1 Performance
int getPendingTasks() Pending tasks 0 Performance
boolean getTcpNoDelay() TCP no delay true Performance
int getSendBufferSize() Send buffer size 0 Performance
int getReceiveBufferSize() Receive buffer size 0 Performance
int getNumberOfLocalConnections() Local active connections 0 Performance
int getNumberOfGlobalConnections() Cluster-wide number of active connections 0 Performance
int getCapacity() getCapacity 1000 Performance
Map<String, Long> getRemoteTopGets() Top Remote Read Keys (LinkedHashMap) Performance
Map<String, Long> getLocalTopGets() Top Local Read Keys (LinkedHashMap) Performance
Map<String, Long> getRemoteTopPuts() Top Remote Write Keys (LinkedHashMap) Performance
Map<String, Long> getLocalTopPuts() Top Local Write Keys (LinkedHashMap) Performance
Map<String, Long> getTopLockedKeys() Top Locked Keys (LinkedHashMap) Performance
Map<String, Long> getTopContendedKeys() Top Contended Keys (LinkedHashMap) Performance
Map<String, Long> getTopLockFailedKeys() Top Keys whose Lock Acquisition Failed by Timeout (LinkedHashMap) Performance
Map<String, Long> getTopWriteSkewFailedKeys() Top Keys whose Write Skew Check was failed (LinkedHashMap) Performance
String[] getCacheNames() Retrieves a list of caches for the cache manager [default, ___protobuf_metadata, ___defaultcache, ___script_cache, namedCache]Informative
long getEvictionSize() Gets the eviction size for the cache -1 Performance
String getActivations() Number of cache entries activated 0 Performance
long getPassivations() Number of cache passivations 0 Performance
int getActiveCount() Number of executor threads -1 Performance
int getPoolSize() Number of active executor threads -1 Performance
int getMaximumPoolSize() Maximum number of executor threads -1 Performance Thrown an error when trying to set it

int getLargestPoolSize() Largest number of executor threads -1 Performance
int getQueueSize() Elements in the queue -1 Performance
long getKeepAliveTime() Keep-alive for pooled threads -1 Performance
int getNumberOfCpus() Number of CPUs in the host 4 Performance
long getTotalMemoryKb() The amount of total memory (KB) in the host 240128 Performance
long getFreeMemoryKb() The amount of free memory (KB) in the host 117921 Performance
String getClusterHealth() Cluster health status HEALTHY Health
String getClusterName() Cluster name ISPN Informative
int getNumberOfNodes() Total nodes in the cluster 1 Performance
String[] getCacheHealth() Per Cache statuses [default, HEALTHY...] Health
boolean isStatisticsEnabled() Statistics enabled true Informative
long getPrepares() Prepares 0 Performance
long getCommits() Commits 0 Performance
long getRollbacks() Rollbacks 0 Performance
long getHits() Number of cache hits 0 Performance
long getMisses() Number of cache misses 0 Performance
long getRemoveHits() Number of cache removal hits 0 Performance
long getRemoveMisses() Number of cache removal misses 0 Performance
long getStores() Number of cache puts" 0 Performance
long getEvictions() Number of cache evictions 0 Performance
double getHitRatio() Hit ratio 0.0 Performance
double getReadWriteRatio() Read/write ratio 0.0 Performance
long getAverageReadTime() Average read time 0 Performance
long getAverageReadTimeNanos() Average read time 0 Performance
long getAverageWriteTime() Average write time 0 Performance
long getAverageWriteTimeNanos() Average write time 0 Performance
long getAverageRemoveTime() Average remove time 0 Performance
long getAverageRemoveTimeNanos() Average remove time 0 Performance
int getNumberOfEntries() Number of current cache entries 0 Performance
int getNumberOfEntriesInMemory() Number of in-memory cache entries 0 Performance
long getDataMemoryUsed() Memory Used by data in the cache 0 Performance
long getOffHeapMemoryUsed() Off-Heap Memory Used 0 Performance
int getRequiredMinimumNumberOfNodes() Required Minimum Nodes 0 Health
long getTimeSinceStart() Seconds since cache started 1410 Health Either this one or time since reset is wrong

long getElapsedTime() Seconds since cache started 0 Health
long getTimeSinceReset() Seconds since cache statistics were reset 35575 Health This doesn't seem correct.

long getCacheLoaderLoads() Number of cache store loads 0 Performance
long getCacheLoaderMisses() Number of cache store load misses 0 Performance
Collection<String> getStores() Returns a collection of cache loader types which are configured and enabled[org.infinispan.persistence.file.SingleFileStore]Informative
long getWritesToTheStores() Number of writes to the store 0 Performance
int getNumberOfPersistedEntries() Number of persisted entries 0 Performance
String getCoordinatorAddress() Coordinator address N/A Informative This seems like a bug, shoudl be local

boolean isCoordinator() Is coordinator? <boolean> Informative This seems like a bug

String getCacheManagerStatus() Cache manager status RUNNING Health
String getDefinedCacheNames() List of defined caches [default(created)___protobuf_metadata(created)___script_cache(created)namedCache(created)]Informative
String getDefinedCacheConfigurationNames() List of defined cache configurations [default,___protobuf_metadata,___script_cache,namedCache]Informative
String getDefinedCacheCount() Number of caches defined 4 Performance
String getCreatedCacheCount() Number of caches created 2 Performance
String getRunningCacheCount() Number of running caches 2 Performance
String getVersion() Infinispan version 10.0.0-SNAPSHOT Informative
String getName() Cache manager name local Informative
String getNodeAddress() Network address local Informative
String getPhysicalAddresses() Physical network addresses local Informative
String getClusterMembers() Cluster members local Performance
int getClusterSize() Cluster size 1 Performance
String getClusterName() Cluster name ISPN Informative
Properties getGlobalConfigurationAsProperties() Global configuration properties (Java properties) Informative
long getHits() Number of cache hits 0 Performance
long getMisses() Number of cache misses 0 Performance
long getRemoveHits() Number of cache removal hits 0 Performance

Chapter 10. Appendix

10.1 Infinispan metrics

111

Method name Metric description Metric example Type Notes
long getRemoveMisses() Number of cache removal misses 0 Performance
long getStores() Number of cache puts" 0 Performance
long getEvictions() Number of cache evictions 0 Performance
double getHitRatio() Hit ratio 0.0 Performance
double getReadWriteRatio() Read/write ratio 0.0 Performance
long getAverageReadTime() Average read time 0 Performance
long getAverageReadTimeNanos() Average read time (ns) 0 Performance
long getAverageWriteTime() Average write time 0 Performance
long getAverageWriteTimeNanos() Average write time (ns) 0 Performance
long getAverageRemoveTime() Average remove time 0 Performance
long getAverageRemoveTimeNanos() Average remove time (ns) 0 Performance
int getNumberOfEntries() Number of current cache entries 0 Performance
int getCurrentNumberOfEntriesInMemory() Number of in-memory cache entries 0 Performance
long getTimeSinceStart() Seconds since cache started 1539 Performance
long getTimeSinceReset() Seconds since cache statistics were reset 1539 Performance
long getDataMemoryUsed() Memory Used by data in the cache 0 Performance
long getOffHeapMemoryUsed() Off-Heap memory used 0 Performance
long getAverageReadTime() Cluster wide total average read time (ms) 0 Performance
long getAverageReadTimeNanos() Cluster wide total average read time (ns) 0 Performance
long getAverageRemoveTime() Cluster wide total average remove time (ms) 0 Performance
long getAverageRemoveTimeNanos() Cluster wide total average remove time (ns) 0 Performance
long getAverageWriteTime() Cluster wide average write time (ms) 0 Performance
long getAverageWriteTimeNanos() Cluster wide average write time (ns) 0 Performance
long getEvictions() Cluster wide total number of cache evictions 0 Performance
long getHits() Cluster wide total number of cache hits 0 Performance
double getHitRatio() Cluster wide total hit ratio 0.0 Performance
long getMisses() Cluster wide total number of cache misses 0 Performance
int getNumberOfEntries() Cluster wide total number of current cache entries 0 Performance
int getCurrentNumberOfEntriesInMemory() Cluster wide total number of in-memory cache entries 0 Performance
double getReadWriteRatio() Cluster wide read/write ratio 0.0 Performance
long getRemoveHits() Cluster wide total number of cache removal hits 0 Performance
long getRemoveMisses() Cluster wide total number of cache removal misses 0 Performance
long getStores() Cluster wide total number of cache puts 0 Performance
long getTimeSinceStart() Number of seconds since the first cache node started 0 Performance
long getDataMemoryUsed() Cluster wide memory used by eviction 0 Performance
long getOffHeapMemoryUsed() Cluster wide off-heap memory used 0 Performance
int getNumberOfLocksAvailable() Cluster wide total number of locks 0 Performance
int getNumberOfLocksHeld() Cluster wide total number of locks held 0 Performance
long getInvalidations() Cluster wide total number of invalidations 0 Performance
long getActivations() Cluster wide total number of activations 0 Performance
long getPassivations() Cluster wide total number of passivations 0 Performance
long getCacheLoaderLoads() Cluster wide total number of cacheloader loads 0 Performance
long getCacheLoaderMisses() Cluster wide total number of cacheloader misses 0 Performance
long getStoreWrites() Cluster wide total number of cachestore stores 0 Performance
long getStaleStatsThreshold() Stale Stats Threshold 0 Performance
long getTimeSinceReset() Seconds since cluster-wide statistics were reset 0 Performance
boolean isStatisticsEnabled() Statistics enabled true Informative
long getMemoryAvailable() Cluster wide available memory. 82848648 Performance Memory metrics doesn't seem to add up

long getMemoryMax() Cluster wide max memory of JVMs 477626368 Performance Memory metrics doesn't seem to add up

long getMemoryTotal() Cluster wide total memory 241172480 Performance Memory metrics doesn't seem to add up

long getMemoryUsed() Cluster wide memory utilisation 158323832 Performance Memory metrics doesn't seem to add up

boolean isStatisticsEnabled() Statistics enabled true Informative
long getAverageReadTime() Cache container total average read time 0 Performance
long getAverageReadTimeNanos() Cache container total average read time (ns) 0 Performance
long getAverageRemoveTime() Cache container total average remove time 0 Performance
long getAverageRemoveTimeNanos() Cache container total average remove time (ns) 0 Performance
long getAverageWriteTime() Cache container average write time 0 Performance
long getAverageWriteTimeNanos() Cache container average write time (ns) 0 Performance
long getEvictions() Cache container total number of cache evictions 0 Performance
long getHits() Cache container total number of cache hits 0 Performance
double getHitRatio() Cache container total hit ratio 0.0 Performance
long getMisses() Cache container total number of cache misses 0 Performance
int getNumberOfEntries() Cache container total number of all cache entries 0 Performance
int getCurrentNumberOfEntriesInMemory() Cache container total number of in-memory cache entries0 Performance
double getReadWriteRatio() Cache container read/write ratio 0.0 Performance
long getRemoveHits() Cache container total number of cache removal hits 0 Performance
long getRemoveMisses() Cache container total number of cache removal misses0 Performance
long getStores() Cache container total number of cache puts" 0 Performance
long getTimeSinceReset() Seconds since cache container statistics were reset 203 Performance
long getDataMemoryUsed() Container memory used by eviction 0 Performance
long getOffHeapMemoryUsed() Off-Heap memory used 0 Performance
boolean isRebalancingEnabled() Rebalancing enabled false Informative
String getClusterAvailability() Cluster availability AVAILABLE Health
String[] getProtofileNames() Protofile Names [] Informative
String[] getFilesWithErrors() Files With Errors [] Informative

Chapter 10. Appendix

112

-Xmx256M -Xms=256M -Xmx128M -Xms=128M
-Xmx128M -Xms=128M with

RocksDB Cache Store
-Xmx51M -Xms=51M, with off-

heap, no eviction

-Xmx256M -
Xms=256M

-Xmx256M -
Xms=256M

-Xmx128M -
Xms=128M

-Xmx128M -
Xms=128M

-Xmx128M -
Xms=128M with

RocksDB
Cache Store

-Xmx128M -
Xms=128M with

RocksDB
Cache Store

-Xmx51M -
Xms=51M, with

off-heap, no
eviction

-Xmx51M -
Xms=51M, with

off-heap, no
eviction

Memory reported by
JVM (-XX:

NativeMemoryTracking
=summary)

Total 1,962,972 685,960 1,810,517 533,429 1,811,701 536,133 1,722,306 445,922
Heap 262,144 262,144 131,072 131,072 131,072 131,072 53,248 53,248
Class 1,112,540 72,580 1,112,605 72,309 1,112,632 73,272 1,112,900 73,308
Thread 251,100 251,100 251,004 251,004 252,196 252,196 251,228 251,228
Code 251,939 14,887 251,879 15,087 251,868 15,660 251,850 15,058
GC 19,974 19,974 15,185 15,185 15,186 15,186 12,345 12,345
Compiler 322 322 404 404 361 361 376 376
Internal 49,550 49,550 32,976 32,976 32,805 32,805 24,897 24,897
Symbol 12,893 12,893 12,884 12,884 12,977 12,977 12,938 12,938

Number of threads 243 243 244 243
RSS (2nd column reported PMAP) 479,960 354,140 464,652 293,620

CGroups

RSS 481,382,400 344,023,040 456,867,840 278,253,568
Cache 23,113,728 39,374,848 44,384,256 89,493,504
Memory limit 524,288 524,288 524,288 524,288
Memory usage 511,056 392,736 508,932 377,124
Usage ratio 97 74 97 71
Free memory 13,232 131,552 15,356 147,164

Avg Error Avg Error Avg Error Avg Error

Benchmarks

1 Thread 6,770 428 6,254 619 5,122 667 6,446 555
2 Threads 12,687 971 11,258 1,579 8,790 580 11,026 1,126
4 Threads 20,205 777 14,135 2,316 11,380 3,161 17,420 2,275
8 Threads 24,643 3,351 15,109 6,424 13,514 6,933 17,420 2,275
16 Threads 30,158 5,425 16,244 9,441 15,373 5,318 29,275 3,060

-Xmx256M -
Xms=256M

-Xmx128M -
Xms=128M

-Xmx128M -
Xms=128M with

RocksDB
Cache Store

-Xmx51M -
Xms=51M, with

off-heap, no
eviction

GC

YGC 95 128 167 390
YGCT 1.094 1.155 1.267 0.890
FGC 6 19 7 4
FGCT 0.709 4.647 0.900 0.285
GCT 1.803 5.802 2.167 1.175

-Xmx256M -
Xms=256M

-Xmx128M -
Xms=128M

-Xmx128M -
Xms=128M with

RocksDB
Cache Store

-Xmx51M -
Xms=51M, with

off-heap, no
eviction

NMT Reserved 1,962,972 1,810,517 1,811,701 1,722,306
NMT Committed 685,960 533,429 536,133 445,922
RSS by PMAP 479,960 354,140 464,652 293,620
RSS by CGroups 511,056 392,736 508,932 377,124
CGroups limit 524,288 524,288 524,288 524,288

Chapter 10. Appendix

10.2 Infinispan 9 memory usage

113

List of Figures

1.1 Container technology history [90] 10
1.2 OpenShift on OpenStack [2] . 11
1.3 Performance comparison between Virtual Machines and

Containers [122] . 12
1.4 Kubernetes Architecture [65] . 13
1.5 Submariner architecture [106] 15
1.6 Recent cloud challenges . 16

2.1 Thesis statement . 19

3.1 Cluster as a Service overview [1] 23
3.2 Exposing a cluster using Publisher Service [1] 24
3.3 HTTP/1.1 request and response flow [99] 26
3.4 Performance comparison of HTTP/1.1 and HTTP/2 [99] 26
3.5 Latency comparison of HTTP/1.1 and HTTP/2 [99] 27
3.6 Performance improvement with HTTP/2 Push and Prioritization

[51] . 27
3.7 TLS handshake sub-protocol [60] 28
3.8 TLS in HTTPS performance results [22] 28
3.9 Nearest Neighbor algorithm pseudo-code [44] 31
3.10 DNF representation [44] . 31
3.11 Swap-1 pseudo-code [44] . 32
3.12 Regression tree [44] . 33
3.13 Logistic curve . 33
3.14 Decision Tree example [100] . 34
3.15 Feed Forward ANN [100] . 34
3.16 Feed Forward ANN [100] . 35
3.17 Anomaly detection technique algorithm 37
3.18 k-means example [5] . 38
3.19 Machine learning workflow . 39
3.20 Three ways to develop a Machine Learning system [83] 40

LIST OF FIGURES

3.21 OtterTune architecture . 42
3.22 OtterTune Machine Learning pipeline 42

4.1 Multi-tenant communication . 46
4.2 Open vSwitch architecture . 47
4.3 Multi-tenant application . 47
4.4 TLS handshake with SNI . 49
4.5 Multiple data containers and a router 52
4.6 Routing function implementation pseudo-code 53

5.1 Accessing application instances between clouds 60
5.2 The router approach for system design 62
5.3 The proposed system . 63
5.4 The diagram of the Evaluated system 64
5.5 Hotrod internal/external address mapping algorithm 65
5.6 External IP Controller algorithm 66
5.7 Benchmark results for performing 1.000 Put and Get operations . 68

6.1 A standard routing model in modern application deployments . . . 72
6.2 HTTP/1.1 Upgrade flow [92] . 73
6.3 TLS/ALPN flow [92] . 74
6.4 Protocol switching implementation pseudo-code 76
6.5 Initialize connection results. 79
6.6 Uploading 360 bytes to the server results. 80
6.7 Uploading 36 bytes to the server results. 80

7.1 Decision Tree (1-level deep) [67] 87
7.2 Decision Tree (2-level deep) [67] 88
7.3 Building a decision tree algorithm [33] 88
7.4 Explanation of level-based and edge-based events by Joe Beda,

CTO of Heptio [47] . 90
7.5 Operator Capability Model [109] 91
7.6 Front page of the OperatorHub service 92
7.7 Expert system high-level design 95
7.8 Expert system pipeline . 97
7.9 Decision boundaries of a Decision Tree Classifier 101
7.10 Decision boundaries of a Decision Tree Classifier (Entropy) . . . 102
7.11 Secure detection and correction of inefficient application

configurations pipeline . 104
7.12 AI configuration management adviser pipeline 105

115

List of Tables

1.1 Recent challenges in the cloud environment 17

3.1 A dataset example . 29

4.1 Memory pricing by the biggest cloud vendors [20] 49
4.2 Requirements for proposed solution 51
4.3 Initializing connections . 54
4.4 Performing 10 000 Cache PUT operations (op in this context is

equal to 10 000 put operations) 55
4.5 Significance measure matrix between benchmark results for

initializing connections . 55
4.6 Significance measure matrix between benchmark results for

performing 10 000 Cache PUT operations 55
4.7 Total memory usage (RSS) with and without multi-tenancy feature 55
4.8 Total memory usage (RSS) compared with the number of tenants . 56

5.1 Requirements for proposed solution 61
5.2 Performing 10 000 Cache PUT operations with different TLS

configuration [97] . 62
5.3 Binary proxy benchmark results 64
5.4 Benchmark results for performing 1.000 Put and Get operations . 67
5.5 Significance measure matrix between benchmark results 68

6.1 Load Balancer pricing by the biggest cloud vendors 72
6.2 Solution requirements. 75
6.3 Initialize connection results . 78
6.4 Uploading 360 bytes to the server results. 78
6.5 Uploading 36 bytes to the server results. 79
6.6 Statistically insignificant benchmark comparisons 79
6.7 Significance measure matrix between benchmark results for

initializing connection in direct mode 81

LIST OF TABLES

6.8 Significance measure matrix between benchmark results for
initializing connection in OCP router mode 81

6.9 Significance measure matrix between benchmark results for
uploading 360 bytes to the server in direct mode 81

6.10 Significance measure matrix between benchmark results for
uploading 360 bytes to the server in OCP router mode 81

6.11 Significance measure matrix between benchmark results for
uploading 36 bytes to the server in OCP router mode 82

6.12 Significance measure matrix between benchmark results for
uploading 36 bytes to the server in direct mode 82

6.13 Use cases and recommendations. 84

7.1 Model accuracy measures for classification 87
7.2 Metrics used for prototype evaluation 94
7.3 Requirements for proposed solution 95
7.4 Knowledge Base for detecting misconfigured discovery protocol . 96
7.5 Cluster lock configuration example 97
7.6 Raw Knowledge Base for Intelligent Operator 99
7.7 Parsed Knowledge Base for Intelligent Operator 100

117

Bibliography

[1] M. Brock A. Goscinski. “A technology to expose a cluster as a service
in a cloud”. In: Proceedings of the Eighth Australasian Symposium on
Parallel and Distributed Computing - Volume 107 107 (2010), pp. 3–12.
URL: http://dl.acm.org/citation.cfm?id=1862295.

[2] A modern hybrid cloud platform for innovation: Containers on Cloud
with Openshift on OpenStack. URL: https : / / www . redhat .
com / ja / blog / modern - hybrid - cloud - platform -
innovation-containers-cloud-openshift-openstack
(visited on 01/24/2020).

[3] F. Pop A. Sfrent. “Asymptotic scheduling for many task computing in
Big Data platforms”. In: Information Sciences 319.Supplement C (2015).
Energy Efficient Data, Services and Memory Management in Big Data
Information Systems, pp. 71–91. ISSN: 0020-0255. DOI: 10.1016/j.
ins.2015.03.053. URL: http://www.sciencedirect.com/
science/article/pii/S0020025515002182.

[4] C. Şerbănescu F. Pop A. Sîrbu C. Pop. “Predicting provisioning and
booting times in a Metal-as-a-service system”. In: Future Generation
Computer Systems 72.Supplement C (2017), pp. 180–192. ISSN:
0167-739X. DOI: 10 . 1016 / j . future . 2016 . 07 . 001. URL:
http://www.sciencedirect.com/science/article/
pii/S0167739X1630231X.

[5] A. Casari A. Zheng. Feature Engineering for Machine Learning:
Principles and Techniques for Data Scientists. 1st. O’Reilly Media, Inc.,
2018. ISBN: 1491953241.

[6] Additional Kubernetes controllers from Fabric8 you can use with your
microservice. URL: https://blog.fabric8.io/additional-
kubernetes - controllers - from - fabric8 - you - can -
use-with-your-microservice-3126a2c4c132 (visited on
05/26/2017).

http://dl.acm.org/citation.cfm?id=1862295
https://www.redhat.com/ja/blog/modern-hybrid-cloud-platform-innovation-containers-cloud-openshift-openstack
https://www.redhat.com/ja/blog/modern-hybrid-cloud-platform-innovation-containers-cloud-openshift-openstack
https://www.redhat.com/ja/blog/modern-hybrid-cloud-platform-innovation-containers-cloud-openshift-openstack
https://doi.org/10.1016/j.ins.2015.03.053
https://doi.org/10.1016/j.ins.2015.03.053
http://www.sciencedirect.com/science/article/pii/S0020025515002182
http://www.sciencedirect.com/science/article/pii/S0020025515002182
https://doi.org/10.1016/j.future.2016.07.001
http://www.sciencedirect.com/science/article/pii/S0167739X1630231X
http://www.sciencedirect.com/science/article/pii/S0167739X1630231X
https://blog.fabric8.io/additional-kubernetes-controllers-from-fabric8-you-can-use-with-your-microservice-3126a2c4c132
https://blog.fabric8.io/additional-kubernetes-controllers-from-fabric8-you-can-use-with-your-microservice-3126a2c4c132
https://blog.fabric8.io/additional-kubernetes-controllers-from-fabric8-you-can-use-with-your-microservice-3126a2c4c132

BIBLIOGRAPHY

[7] Adrian Cockcroft’s Blog: Ops, DevOps and PaaS (NoOps) at Netflix. URL:
http://perfcap.blogspot.com/2012/03/ops-devops-
and-noops-at-netflix.html (visited on 12/10/2019).

[8] Announcing Amazon Elastic Compute Cloud (Amazon EC2) - beta. URL:
https://aws.amazon.com/about-aws/whats-new/2006/
08/24/announcing-amazon-elastic-compute-cloud-
amazon-ec2---beta/ (visited on 08/20/2015).

[9] Apache Mesos. URL: http://mesos.apache.org/ (visited on
01/31/2020).

[10] AppArmor - Ubuntu Wiki. URL: https://wiki.ubuntu.com/
AppArmor (visited on 01/30/2020).

[11] AWS pricing. 2018. URL: https : / / aws . amazon . com /
elasticloadbalancing/pricing/ (visited on 07/31/2018).

[12] D. Oppenheimer E. Brewer-J. Wilkes B. Burns B. Grant. “Borg, Omega,
and Kubernetes”. In: Communications of the ACM 59.5 (2016), pp. 50–57.
ISSN: 00010782. DOI: 10.1145/2890784. URL: http://dl.acm.
org/citation.cfm?doid=2930840.2890784.

[13] Best Practices for Becoming an Exceptional Postgres DBA. URL:
https : / / www . slideshare . net / EnterpriseDB / dba -
best - practices - webinar - slides - final (visited on
12/13/2019).

[14] M. Bishop. “Hypertext transfer protocol version 3 (HTTP/3)”. In: Internet
Engineering Task Force, Internet-Draft draft-ietf-quic-http-20 (2019).

[15] J.A. Breuker B.J. Wielinga A.Th. Schreiber. “KADS: a modelling
approach to knowledge engineering”. In: Knowledge Acquisition 4.1
(1992), pp. 5–53. ISSN: 1042-8143. DOI: 10.1016/1042-8143(92)
90013 - Q. URL: https : / / www . sciencedirect . com /
science/article/pii/104281439290013Q.

[16] P. Chaganti. Xen Virtualization. Packt Publishing Ltd, 2007, p. 149. ISBN:
1847192491. URL: https://books.google.com/books?id=
kRJUkF9DaxIC{\&}pgis=1.

[17] Sameer Singh Chauhan et al. “Brokering in Interconnected Cloud
Computing Environments: A Survey”. In: J. Parallel Distrib. Comput.
(2018). DOI: 10.1016/j.jpdc.2018.08.001. URL: https:
//doi.org/10.1016/j.jpdc.2018.08.001.

[18] Cincinnati for OpenShift. URL: https : / / github . com /
openshift/cincinnati (visited on 01/31/2020).

119

http://perfcap.blogspot.com/2012/03/ops-devops-and-noops-at-netflix.html
http://perfcap.blogspot.com/2012/03/ops-devops-and-noops-at-netflix.html
https://aws.amazon.com/about-aws/whats-new/2006/08/24/announcing-amazon-elastic-compute-cloud-amazon-ec2---beta/
https://aws.amazon.com/about-aws/whats-new/2006/08/24/announcing-amazon-elastic-compute-cloud-amazon-ec2---beta/
https://aws.amazon.com/about-aws/whats-new/2006/08/24/announcing-amazon-elastic-compute-cloud-amazon-ec2---beta/
http://mesos.apache.org/
https://wiki.ubuntu.com/AppArmor
https://wiki.ubuntu.com/AppArmor
https://aws.amazon.com/elasticloadbalancing/pricing/
https://aws.amazon.com/elasticloadbalancing/pricing/
https://doi.org/10.1145/2890784
http://dl.acm.org/citation.cfm?doid=2930840.2890784
http://dl.acm.org/citation.cfm?doid=2930840.2890784
https://www.slideshare.net/EnterpriseDB/dba-best-practices-webinar-slides-final
https://www.slideshare.net/EnterpriseDB/dba-best-practices-webinar-slides-final
https://doi.org/10.1016/1042-8143(92)90013-Q
https://doi.org/10.1016/1042-8143(92)90013-Q
https://www.sciencedirect.com/science/article/pii/104281439290013Q
https://www.sciencedirect.com/science/article/pii/104281439290013Q
https://books.google.com/books?id=kRJUkF9DaxIC{\&}pgis=1
https://books.google.com/books?id=kRJUkF9DaxIC{\&}pgis=1
https://doi.org/10.1016/j.jpdc.2018.08.001
https://doi.org/10.1016/j.jpdc.2018.08.001
https://doi.org/10.1016/j.jpdc.2018.08.001
https://github.com/openshift/cincinnati
https://github.com/openshift/cincinnati

BIBLIOGRAPHY

[19] Cloud Native Computing Foundation. URL: https://www.cncf.io/
(visited on 01/31/2020).

[20] Cloud pricing comparison: AWS vs. Microsoft Azure vs. Google Cloud vs.
IBM Cloud. URL: https://www.infoworld.com/article/
3237566/cloud-pricing-comparison-aws-vs-azure-
vs-google-vs-ibm.html (visited on 02/28/2020).

[21] Custom Resources - Kubernetes. URL: https://kubernetes.io/
docs/concepts/extend- kubernetes/api- extension/
custom-resources/ (visited on 12/11/2019).

[22] I. Leontiadis Y. Grunenberger-M. Mellia M. Munafò K. Papagiannaki P.
Steenkiste D. Naylor A. Finamore. “The Cost of the ’S’ in HTTPS”. In:
(2014). DOI: 10.1145/2674005.2674991. URL: http://dx.
doi.org/10.1145/2674005.2674991..

[23] G.J. Gordon B. Zhang D. Van Aken A. Pavlo. “Automatic Database
Management System Tuning Through Large-scale Machine Learning”.
In: Proceedings of the 2017 ACM International Conference on
Management of Data. SIGMOD ’17. New York, NY, USA: ACM, 2017,
pp. 1009–1024. ISBN: 978-1-4503-4197-4. DOI: 10.1145/3035918.
3064029. URL: http://doi.acm.org/10.1145/3035918.
3064029.

[24] P. Dangeti. Statistics for machine learning : build supervised,
unsupervised, and reinforcement learning models using both Python
and R. ISBN: 9781788295758. URL: https : / / learning .
oreilly.com/library/view/statistics-for-machine/
9781788295758/.

[25] Docker - Swarm Mode. URL: https : / / docs . docker . com /
engine/swarm/ (visited on 01/31/2020).

[26] Drools Project. URL: https : / / www . drools . org/ (visited on
03/04/2020).

[27] M. Morisio E. Çano. Hybrid recommender systems: A systematic
literature review. 2017. DOI: 10.3233/IDA-163209. arXiv: 1901.
03888.

[28] Edge Triggered Vs Level Triggered interrupts | Linux kernel. URL:
http://venkateshabbarapu.blogspot.com/2013/03/
edge- triggered- vs- level- triggered.html (visited on
12/10/2019).

120

https://www.cncf.io/
https://www.infoworld.com/article/3237566/cloud-pricing-comparison-aws-vs-azure-vs-google-vs-ibm.html
https://www.infoworld.com/article/3237566/cloud-pricing-comparison-aws-vs-azure-vs-google-vs-ibm.html
https://www.infoworld.com/article/3237566/cloud-pricing-comparison-aws-vs-azure-vs-google-vs-ibm.html
https://kubernetes.io/docs/concepts/extend-kubernetes/api-extension/custom-resources/
https://kubernetes.io/docs/concepts/extend-kubernetes/api-extension/custom-resources/
https://kubernetes.io/docs/concepts/extend-kubernetes/api-extension/custom-resources/
https://doi.org/10.1145/2674005.2674991
http://dx.doi.org/10.1145/2674005.2674991.
http://dx.doi.org/10.1145/2674005.2674991.
https://doi.org/10.1145/3035918.3064029
https://doi.org/10.1145/3035918.3064029
http://doi.acm.org/10.1145/3035918.3064029
http://doi.acm.org/10.1145/3035918.3064029
https://learning.oreilly.com/library/view/statistics-for-machine/9781788295758/
https://learning.oreilly.com/library/view/statistics-for-machine/9781788295758/
https://learning.oreilly.com/library/view/statistics-for-machine/9781788295758/
https://docs.docker.com/engine/swarm/
https://docs.docker.com/engine/swarm/
https://www.drools.org/
https://doi.org/10.3233/IDA-163209
https://arxiv.org/abs/1901.03888
https://arxiv.org/abs/1901.03888
http://venkateshabbarapu.blogspot.com/2013/03/edge-triggered-vs-level-triggered.html
http://venkateshabbarapu.blogspot.com/2013/03/edge-triggered-vs-level-triggered.html

BIBLIOGRAPHY

[29] Elastic Load Balancing - Cloud Network Load Balancer. URL: https:
/ / aws . amazon . com / elasticloadbalancing/ (visited on
05/29/2017).

[30] Factor Analisys Scikit-learn. URL: scikit - learn . org /
stable/modules/generated/sklearn.decomposition.
FactorAnalysis.html (visited on 09/12/2019).

[31] FeedHenry - Accelerate mobile app development. URL: http : / /
feedhenry.org/ (visited on 07/12/2019).

[32] M. Jampani G. Kakulapati A. Lakshman A. Pilchin S. Sivasubramanian
P. Vosshall W. Vogels G. Decandia D. Hastorun. “Dynamo: Amazon’s
Highly Available Key-value Store”. In: (2007).

[33] T. Hastie R. Tibshirani G. James D. Witten. An introduction to Statistical
Learning. 2000. ISBN: 978-1-4614-7137-0. DOI: 10.1007/978-1-
4614-7138-7. arXiv: arXiv:1011.1669v3.

[34] B. Claise J. Quittek G. Sadasivan JN. Brownlee. Transport Layer Security
(TLS) Extensions: Extension Definitions. URL: https : / / tools .
ietf.org/html/rfc6066.

[35] Gartner Says Worldwide Public Cloud Services Market to Grow 18
Percent in 2017. URL: http://www.gartner.com/newsroom/
id/3616417 (visited on 05/05/2017).

[36] Google Cloud Load Balancing - High Performance, Global & Scalable
| Google Cloud Platform. URL: https://cloud.google.com/
load-balancing/ (visited on 05/29/2017).

[37] Google Cloud Platform Blog: Containers, VMs, Kubernetes and VMware.
URL: https://cloudplatform.googleblog.com/2014/08/
containers-vms-kubernetes-and-vmware.html (visited on
05/29/2017).

[38] Google Cloud Platform Blog: Enter the Andromeda zone - Google
Cloud Platform’s latest networking stack. URL: https : / /
cloudplatform . googleblog . com / 2014 / 04 / enter -
andromeda - zone - google - cloud - platforms - latest -
networking-stack.html (visited on 03/07/2019).

[39] Google Cloud Platform Blog: Enter the Andromeda zone - Google
Cloud Platform’s latest networking stack. URL: https : / /
cloudplatform . googleblog . com / 2014 / 04 / enter -
andromeda - zone - google - cloud - platforms - latest -
networking-stack.html (visited on 05/29/2017).

121

https://aws.amazon.com/elasticloadbalancing/
https://aws.amazon.com/elasticloadbalancing/
scikit-learn.org/stable/modules/generated/sklearn.decomposition.FactorAnalysis.html
scikit-learn.org/stable/modules/generated/sklearn.decomposition.FactorAnalysis.html
scikit-learn.org/stable/modules/generated/sklearn.decomposition.FactorAnalysis.html
http://feedhenry.org/
http://feedhenry.org/
https://doi.org/10.1007/978-1-4614-7138-7
https://doi.org/10.1007/978-1-4614-7138-7
https://arxiv.org/abs/arXiv:1011.1669v3
https://tools.ietf.org/html/rfc6066
https://tools.ietf.org/html/rfc6066
http://www.gartner.com/newsroom/id/3616417
http://www.gartner.com/newsroom/id/3616417
https://cloud.google.com/load-balancing/
https://cloud.google.com/load-balancing/
https://cloudplatform.googleblog.com/2014/08/containers-vms-kubernetes-and-vmware.html
https://cloudplatform.googleblog.com/2014/08/containers-vms-kubernetes-and-vmware.html
https://cloudplatform.googleblog.com/2014/04/enter-andromeda-zone-google-cloud-platforms-latest-networking-stack.html
https://cloudplatform.googleblog.com/2014/04/enter-andromeda-zone-google-cloud-platforms-latest-networking-stack.html
https://cloudplatform.googleblog.com/2014/04/enter-andromeda-zone-google-cloud-platforms-latest-networking-stack.html
https://cloudplatform.googleblog.com/2014/04/enter-andromeda-zone-google-cloud-platforms-latest-networking-stack.html
https://cloudplatform.googleblog.com/2014/04/enter-andromeda-zone-google-cloud-platforms-latest-networking-stack.html
https://cloudplatform.googleblog.com/2014/04/enter-andromeda-zone-google-cloud-platforms-latest-networking-stack.html
https://cloudplatform.googleblog.com/2014/04/enter-andromeda-zone-google-cloud-platforms-latest-networking-stack.html
https://cloudplatform.googleblog.com/2014/04/enter-andromeda-zone-google-cloud-platforms-latest-networking-stack.html

BIBLIOGRAPHY

[40] Google Cloud pricing. 2018. URL: https://cloud.google.com/
pricing/ (visited on 07/31/2018).

[41] Google Transparency Repport. URL: https : / /
transparencyreport . google . com / https / overview ?
hl=en (visited on 02/27/2020).

[42] Graal VM - High-performance polyglot VM. URL: https://www.
graalvm.org/ (visited on 02/28/2020).

[43] HAProxy - The Reliable, High Performance TCP/HTTP Load Balancer.
URL: http://www.haproxy.org/ (visited on 05/29/2017).

[44] H.A. Güvenir I. Uysal. “An overview of regression techniques for
knowledge discovery”. In: Knowledge Eng. Review 14.4 (1999),
pp. 319–340. URL: http : / / journals . cambridge . org /
action/displayAbstract?aid=36077.

[45] Implement router http/2 support ticket. 2018. URL: https://trello.
com/c/qzvlzuyx/27- 3- implement- router- http- 2-
support-terminating-at-the-router-router (visited on
07/31/2018).

[46] Istio. URL: https://istio.io/ (visited on 01/31/2020).

[47] K. Nova J. Garrison. Cloud native infrastructure : patterns for
scalable infrastructure and applications in a dynamic environment.
ISBN: 9781491984307. URL: https : / / learning . oreilly .
com / library / view / cloud - native - infrastructure /
9781491984291/.

[48] M. Thomson J. Iyengar. “Quic: A udp-based multiplexed and
secure transport”. In: Internet Engineering Task Force, Internet-Draft
draftietf-quic-transport-17 (2018).

[49] M.J. Realff J.H. Lee J. Shin. “Machine learning: Overview of the recent
progresses and implications for the process systems engineering field”. In:
Computers & Chemical Engineering 114 (2018), pp. 111–121.

[50] M.J. Realff J.H. Lee J.Shin. “Machine learning: Overview of the recent
progresses and implications for the process systems engineering field”.
In: Computers & Chemical Engineering 114 (2018), pp. 111–121. DOI:
10.1016/j.compchemeng.2017.10.008. URL: https://
doi.org/10.1016/j.compchemeng.2017.10.008.

[51] M. Jain E. Katz-Bassett R. Govindan K. Zarifis M. Holland. “Modeling
HTTP/2 Speed from HTTP/1 Traces”. In: 2016, pp. 233–247. DOI: 10.
1007 / 978 - 3 - 319 - 30505 - 9 _ 18. URL: http : / / link .
springer.com/10.1007/978-3-319-30505-9{_}18.

122

https://cloud.google.com/pricing/
https://cloud.google.com/pricing/
https://transparencyreport.google.com/https/overview?hl=en
https://transparencyreport.google.com/https/overview?hl=en
https://transparencyreport.google.com/https/overview?hl=en
https://www.graalvm.org/
https://www.graalvm.org/
http://www.haproxy.org/
http://journals.cambridge.org/action/displayAbstract?aid=36077
http://journals.cambridge.org/action/displayAbstract?aid=36077
https://trello.com/c/qzvlzuyx/27-3-implement-router-http-2-support-terminating-at-the-router-router
https://trello.com/c/qzvlzuyx/27-3-implement-router-http-2-support-terminating-at-the-router-router
https://trello.com/c/qzvlzuyx/27-3-implement-router-http-2-support-terminating-at-the-router-router
https://istio.io/
https://learning.oreilly.com/library/view/cloud-native-infrastructure/9781491984291/
https://learning.oreilly.com/library/view/cloud-native-infrastructure/9781491984291/
https://learning.oreilly.com/library/view/cloud-native-infrastructure/9781491984291/
https://doi.org/10.1016/j.compchemeng.2017.10.008
https://doi.org/10.1016/j.compchemeng.2017.10.008
https://doi.org/10.1016/j.compchemeng.2017.10.008
https://doi.org/10.1007/978-3-319-30505-9_18
https://doi.org/10.1007/978-3-319-30505-9_18
http://link.springer.com/10.1007/978-3-319-30505-9{_}18
http://link.springer.com/10.1007/978-3-319-30505-9{_}18

BIBLIOGRAPHY

[52] E.A. Kemp. “Problems in expert systems development”. In: Proceedings
1993 The First New Zealand International Two-Stream Conference on
Artificial Neural Networks and Expert Systems. IEEE Comput. Soc. Press,
pp. 166–167. ISBN: 0-8186-4260-2. DOI: 10.1109/ANNES.1993.
323053. URL: http://ieeexplore.ieee.org/document/
323053/.

[53] J. Kingston. “Pragmatic KADS: a methodological approach to a small
knowledge-based systems project”. In: Expert Systems 9.4 (1992),
pp. 171–180. ISSN: 0266-4720. DOI: 10.1111/j.1468- 0394.
1992.tb00399.x. URL: http://doi.wiley.com/10.1111/
j.1468-0394.1992.tb00399.x.

[54] R.M.E. Salas J.B. Ewen-R. Allen S.V. Sarma K.M. Gunnarsdottir C.E.
Gamaldo. “A novel sleep stage scoring system: combining expert-based
rules with a decision tree classifier”. In: 2018 40th Annual International
Conference of the IEEE Engineering in Medicine and Biology Society
(EMBC). IEEE. 2018, pp. 3240–3243.

[55] Kubernetes - Production-Grade Container Orchestration. 2017. URL:
https://kubernetes.io/ (visited on 05/04/2017).

[56] S. Łaskawiec. “The Evolution of Java Based Software Architectures”. In:
Columbia International Publishing Journal of Cloud Computing Research
2.1 (2016), pp. 1–17. URL: http://paper.uscip.us/jccr/
JCCR.2016.1001.pdf.

[57] Linux Programmer’s Manual - Capabilities. URL: http : / / man7 .
org / linux / man - pages / man7 / capabilities . 7 . html
(visited on 01/30/2020).

[58] Linux Programmer’s Manual - CGroups. URL: http://man7.org/
linux / man - pages / man7 / cgroups . 7 . html (visited on
01/30/2020).

[59] Linux Programmer’s Manual - Namespaces. URL: http://man7.
org/linux/man-pages/man7/namespaces.7.html (visited
on 01/30/2020).

[60] T. Jirsik P. Celeda M. Husák M. Cermak. “Network-based HTTPS Client
Identification Using SSL/TLS Fingerprinting”. In: Aug. 2015. DOI: 10.
1109/ARES.2015.35.

[61] P. Clements M. Shaw. “The golden age of software architecture”. In: IEEE
Software 23.2 (2006). ISSN: 0740-7459. DOI: 10.1109/MS.2006.58.

123

https://doi.org/10.1109/ANNES.1993.323053
https://doi.org/10.1109/ANNES.1993.323053
http://ieeexplore.ieee.org/document/323053/
http://ieeexplore.ieee.org/document/323053/
https://doi.org/10.1111/j.1468-0394.1992.tb00399.x
https://doi.org/10.1111/j.1468-0394.1992.tb00399.x
http://doi.wiley.com/10.1111/j.1468-0394.1992.tb00399.x
http://doi.wiley.com/10.1111/j.1468-0394.1992.tb00399.x
https://kubernetes.io/
http://paper.uscip.us/jccr/JCCR.2016.1001.pdf
http://paper.uscip.us/jccr/JCCR.2016.1001.pdf
http://man7.org/linux/man-pages/man7/capabilities.7.html
http://man7.org/linux/man-pages/man7/capabilities.7.html
http://man7.org/linux/man-pages/man7/cgroups.7.html
http://man7.org/linux/man-pages/man7/cgroups.7.html
http://man7.org/linux/man-pages/man7/namespaces.7.html
http://man7.org/linux/man-pages/man7/namespaces.7.html
https://doi.org/10.1109/ARES.2015.35
https://doi.org/10.1109/ARES.2015.35
https://doi.org/10.1109/MS.2006.58

BIBLIOGRAPHY

[62] J. Bartos W. Dyczka-K. Królikowska M. Wasilewski W. Krysicki.
Rachunek prawdopodobieństwa i statystyka matematyczna w zadaniach
cz. 2. PWN, 1999. ISBN: 83-01-11384-7.

[63] A. Brandon V. Muntes-Mulero D. Carrera M. Zasadzinski M. Sole.
“Next Stop ’NoOps’: Enabling Cross-System Diagnostics Through
Graph-Based Composition of Logs and Metrics”. In: Proceedings - IEEE
International Conference on Cluster Computing, ICCC. 2018. ISBN:
9781538683194. DOI: 10.1109/CLUSTER.2018.00039. arXiv:
1809.07687.

[64] R.I. Tutueanu V. Cristea-J. Kołodziej M.A. Vasile F. Pop.
“Resource-aware hybrid scheduling algorithm in heterogeneous
distributed computing”. In: Future Generation Computer Systems
51.Supplement C (2015). Special Section: A Note on New Trends in
Data-Aware Scheduling and Resource Provisioning in Modern HPC
Systems, pp. 61–71. ISSN: 0167-739X. DOI: 10.1016/j.future.
2014.11.019. URL: http://www.sciencedirect.com/
science/article/pii/S0167739X14002532.

[65] Marko Lukša. Kubernetes in Action. Manning Publications, 2017. ISBN:
9781617293726.

[66] Minikube Project. URL: https://github.com/kubernetes/
minikube (visited on 02/24/2020).

[67] P. Miziuła. Machine Learning training. 2018.

[68] A. Goichot I. Chrisment M.M. Shbair T. Cholez. “Efficiently bypassing
SNI-based HTTPS filtering”. In: Proceedings of the 2015 IFIP/IEEE
International Symposium on Integrated Network Management, IM 2015.
2015. ISBN: 9783901882760. DOI: 10.1109/INM.2015.7140423.

[69] Monthly Configuring the server topics - Keycloak. URL: https : / /
keycloak . discourse . group / c / configuring - the -
server/6/l/top/monthly (visited on 12/13/2019).

[70] F. Pop V. Cristea N. Bessis S. Sotiriadis. “Using a novel
message-exchanging optimization (MEO) model to reduce energy
consumption in distributed systems”. In: Simulation Modelling Practice
and Theory 39.Supplement C (2013). S.I.Energy efficiency in grids and
clouds, pp. 104–120. ISSN: 1569-190X. DOI: 10.1016/j.simpat.
2013.02.003. URL: http://www.sciencedirect.com/
science/article/pii/S1569190X13000191.

[71] M. Wolfthal N. Maurer. Netty in action. ISBN: 9781617291470. URL:
https://www.manning.com/books/netty-in-action.

124

https://doi.org/10.1109/CLUSTER.2018.00039
https://arxiv.org/abs/1809.07687
https://doi.org/10.1016/j.future.2014.11.019
https://doi.org/10.1016/j.future.2014.11.019
http://www.sciencedirect.com/science/article/pii/S0167739X14002532
http://www.sciencedirect.com/science/article/pii/S0167739X14002532
https://github.com/kubernetes/minikube
https://github.com/kubernetes/minikube
https://doi.org/10.1109/INM.2015.7140423
https://keycloak.discourse.group/c/configuring-the-server/6/l/top/monthly
https://keycloak.discourse.group/c/configuring-the-server/6/l/top/monthly
https://keycloak.discourse.group/c/configuring-the-server/6/l/top/monthly
https://doi.org/10.1016/j.simpat.2013.02.003
https://doi.org/10.1016/j.simpat.2013.02.003
http://www.sciencedirect.com/science/article/pii/S1569190X13000191
http://www.sciencedirect.com/science/article/pii/S1569190X13000191
https://www.manning.com/books/netty-in-action

BIBLIOGRAPHY

[72] Name-based Virtual Host Support - Apache HTTP Server Version 2.2.
URL: https://httpd.apache.org/docs/2.2/vhosts/
name-based.html (visited on 05/21/2019).

[73] Netty web page. 2018. URL: https : / / netty . io/ (visited on
08/10/2018).

[74] nginx. URL: https://nginx.org/en/ (visited on 05/29/2017).

[75] Open vSwitch: QinQ Performance - Red Hat Developer Blog. URL:
https://developers.redhat.com/blog/2017/06/27/
open-vswitch-qinq-performance/ (visited on 05/21/2019).

[76] OpenDataHub · OpenDataHub. URL: https://opendatahub.io/
(visited on 12/13/2019).

[77] OpenJDK: jmh. URL: https://openjdk.java.net/projects/
code-tools/jmh/ (visited on 03/08/2019).

[78] OpenShift: Container Application Platform by Red Hat, Built on Docker
and Kubernetes. URL: https://www.openshift.com/ (visited on
05/04/2017).

[79] OpenShift SDN - Additional Concepts | Architecture | OpenShift
Enterprise 3.0. URL: https : / / docs . openshift . com /
enterprise / 3 . 0 / architecture / additional{\ _
}concepts/sdn.html (visited on 03/07/2019).

[80] OpenSSL 1.0.2 release notes. 2018. URL: https://www.openssl.
org / news / openssl - 1 . 0 . 2 - notes . html (visited on
08/10/2018).

[81] operator-framework/operator-sdk: SDK for building Kubernetes
applications. Provides high level APIs, useful abstractions, and
project scaffolding. URL: https : / / github . com / operator -
framework/operator-sdk (visited on 12/10/2019).

[82] S. Perera. Introduction to Anomaly Detection: Concepts and Techniques |
My views of the World and Systems. 2015. URL: https://iwringer.
wordpress . com / 2015 / 11 / 17 / anomaly - detection -
concepts-and-techniques/ (visited on 08/02/2019).

[83] C. Pinhanez. “Machine Teaching by Domain Experts: Towards More
Humane, Inclusive, and Intelligent Machine Learning Systems”. In: arXiv
preprint arXiv:1908.08931 (2019).

[84] Principal component analysis. URL: https : / / en . wikipedia .
org / wiki / Principal _ component _ analysis (visited on
02/14/2020).

125

https://httpd.apache.org/docs/2.2/vhosts/name-based.html
https://httpd.apache.org/docs/2.2/vhosts/name-based.html
https://netty.io/
https://nginx.org/en/
https://developers.redhat.com/blog/2017/06/27/open-vswitch-qinq-performance/
https://developers.redhat.com/blog/2017/06/27/open-vswitch-qinq-performance/
https://opendatahub.io/
https://openjdk.java.net/projects/code-tools/jmh/
https://openjdk.java.net/projects/code-tools/jmh/
https://www.openshift.com/
https://docs.openshift.com/enterprise/3.0/architecture/additional{_}concepts/sdn.html
https://docs.openshift.com/enterprise/3.0/architecture/additional{_}concepts/sdn.html
https://docs.openshift.com/enterprise/3.0/architecture/additional{_}concepts/sdn.html
https://www.openssl.org/news/openssl-1.0.2-notes.html
https://www.openssl.org/news/openssl-1.0.2-notes.html
https://github.com/operator-framework/operator-sdk
https://github.com/operator-framework/operator-sdk
https://iwringer.wordpress.com/2015/11/17/anomaly-detection-concepts-and-techniques/
https://iwringer.wordpress.com/2015/11/17/anomaly-detection-concepts-and-techniques/
https://iwringer.wordpress.com/2015/11/17/anomaly-detection-concepts-and-techniques/
https://en.wikipedia.org/wiki/Principal_component_analysis
https://en.wikipedia.org/wiki/Principal_component_analysis

BIBLIOGRAPHY

[85] Prometheus - Monitoring system and time series database. URL: https:
//prometheus.io/ (visited on 03/04/2020).

[86] Quarkus - Supersonic Subatomic Java. URL: https://quarkus.io/
(visited on 02/28/2020).

[87] S. Paul R. Jain. Network virtualization and software defined networking
for cloud computing: A survey. 2013. DOI: 10.1109/MCOM.2013.
6658648. arXiv: 1509.07675.

[88] W. Browne R. Urbanowicz. Introducing Rule-Based Machine Learning:
A Practical Guide. Tech. rep. 2015. URL: ryanurbanowicz.com/
wp - content / uploads / 2016 / 09 / Urbanowicz{\ _
}Browne{\ _ }2015{\ _ }Introducing - Rule - Based -
Machine-Learning-A-Practical-Guide-GECCO15-CRC-
Copy.pdf.

[89] RAC - Reliable Asynchronous Clustering Design. URL: https : / /
github.com/infinispan/infinispan- designs/blob/
master / RAC :- Reliable - Asynchronous - Clustering .
asciidoc (visited on 03/04/2020).

[90] A. Randal. The Ideal Versus the Real: Revisiting the History of Virtual
Machines and Containers. Tech. rep. arXiv: 1904.12226v1.

[91] ReleaseNotes/Austin - OpenStack. URL: https : / / wiki .
openstack . org / wiki / ReleaseNotes / Austin (visited on
08/20/2015).

[92] J. Reschke R.T. Fielding. Hypertext Transfer Protocol (HTTP/1.1):
Message Syntax and Routing. RFC 7230. 2014. DOI: 10 . 17487 /
RFC7230. URL: https://rfc-editor.org/rfc/rfc7230.
txt.

[93] R.N. Taylor R.T. Fielding. Principled Design of the Modern Web
Architecture. Tech. rep. 2. 2000, pp. 115–150. URL: https://www.
ics.uci.edu/{~}taylor/documents/2002-REST-TOIT.
pdf.

[94] M. Khmakhem S. Amamou Z. Trifa. “Data protection in cloud computing:
A Survey of the State-of-Art”. In: Procedia Computer Science 159 (2019).
Knowledge-Based and Intelligent Information & Engineering Systems:
Proceedings of the 23rd International Conference KES2019, pp. 155–161.
ISSN: 1877-0509. DOI: 10.1016/j.procs.2019.09.170. URL:
http://www.sciencedirect.com/science/article/
pii/S1877050919313493.

126

https://prometheus.io/
https://prometheus.io/
https://quarkus.io/
https://doi.org/10.1109/MCOM.2013.6658648
https://doi.org/10.1109/MCOM.2013.6658648
https://arxiv.org/abs/1509.07675
ryanurbanowicz.com/wp-content/uploads/2016/09/Urbanowicz{_}Browne{_}2015{_}Introducing-Rule-Based-Machine-Learning-A-Practical-Guide-GECCO15-CRC-Copy.pdf
ryanurbanowicz.com/wp-content/uploads/2016/09/Urbanowicz{_}Browne{_}2015{_}Introducing-Rule-Based-Machine-Learning-A-Practical-Guide-GECCO15-CRC-Copy.pdf
ryanurbanowicz.com/wp-content/uploads/2016/09/Urbanowicz{_}Browne{_}2015{_}Introducing-Rule-Based-Machine-Learning-A-Practical-Guide-GECCO15-CRC-Copy.pdf
ryanurbanowicz.com/wp-content/uploads/2016/09/Urbanowicz{_}Browne{_}2015{_}Introducing-Rule-Based-Machine-Learning-A-Practical-Guide-GECCO15-CRC-Copy.pdf
ryanurbanowicz.com/wp-content/uploads/2016/09/Urbanowicz{_}Browne{_}2015{_}Introducing-Rule-Based-Machine-Learning-A-Practical-Guide-GECCO15-CRC-Copy.pdf
https://github.com/infinispan/infinispan-designs/blob/master/RAC:-Reliable-Asynchronous-Clustering.asciidoc
https://github.com/infinispan/infinispan-designs/blob/master/RAC:-Reliable-Asynchronous-Clustering.asciidoc
https://github.com/infinispan/infinispan-designs/blob/master/RAC:-Reliable-Asynchronous-Clustering.asciidoc
https://github.com/infinispan/infinispan-designs/blob/master/RAC:-Reliable-Asynchronous-Clustering.asciidoc
https://arxiv.org/abs/1904.12226v1
https://wiki.openstack.org/wiki/ReleaseNotes/Austin
https://wiki.openstack.org/wiki/ReleaseNotes/Austin
https://doi.org/10.17487/RFC7230
https://doi.org/10.17487/RFC7230
https://rfc-editor.org/rfc/rfc7230.txt
https://rfc-editor.org/rfc/rfc7230.txt
https://www.ics.uci.edu/{~}taylor/documents/2002-REST-TOIT.pdf
https://www.ics.uci.edu/{~}taylor/documents/2002-REST-TOIT.pdf
https://www.ics.uci.edu/{~}taylor/documents/2002-REST-TOIT.pdf
https://doi.org/10.1016/j.procs.2019.09.170
http://www.sciencedirect.com/science/article/pii/S1877050919313493
http://www.sciencedirect.com/science/article/pii/S1877050919313493

BIBLIOGRAPHY

[95] C. Bird R. Deline-H. Gall E. Kamar N. Nagappan B. Nushi T.
Zimmermann S. Amershi A. Begel. Software Engineering for Machine
Learning: A Case Study. Tech. rep. URL: https : / / docs .
microsoft.com/en-us/azure/devops/learn/devops-
at-microsoft/.

[96] A. Langley E. Stephan S. Friedl A. Popov. Transport Layer Security
(TLS) Application-Layer Protocol Negotiation Extension. RFC 7301.
2014. DOI: 10.17487/RFC7230. URL: https://rfc-editor.
org/rfc/rfc7301.txt.

[97] M. Choraś S. Łaskawiec. “Considering service name indication
for multi-tenancy routing in cloud environments”. In: Advances in
Intelligent Systems and Computing. Vol. 525. 2017, pp. 271–278. ISBN:
9783319472737. DOI: 10.1007/978-3-319-47274-4_33.

[98] M. Choraś S. Łaskawiec. “New Solutions for exposing Clustered
Applications deployed in the cloud”. In: (2018).

[99] Y. Chen H. de Saxce I. Oprescu. “Is HTTP/2 really faster than
HTTP/1.1?” In: 2015 IEEE Conference on Computer Communications
Workshops (INFOCOM WKSHPS). IEEE, 2015, pp. 293–299. ISBN:
978-1-4673-7131-5. DOI: 10 . 1109 / INFCOMW . 2015 . 7179400.
URL: http://ieeexplore.ieee.org/document/7179400/.

[100] P. Pintelas S.B. Kotsiantis I. Zaharakis. “Supervised machine learning: A
review of classification techniques”. In: Emerging artificial intelligence
applications in computer engineering 160 (2007), pp. 3–24.

[101] M. Sciabarra. LEARNING APACHE OPENWHISK : developing open
serverless solutions. O’REILLY MEDIA, INC, USA, 2019. ISBN:
9781492046165. URL: https : / / learning . oreilly .
com / library / view / learning - apache - openwhisk /
9781492046158/.

[102] SELinux Project Wiki. URL: https://selinuxproject.org/
page/Main_Page (visited on 01/30/2020).

[103] sklearn.tree.DecisionTreeClassifier — scikit-learn 0.22 documentation.
URL: https : / / scikit - learn . org / stable / modules /
generated / sklearn . tree . DecisionTreeClassifier .
html (visited on 12/11/2019).

[104] Spanning JGroups Kubernetes-based clusters across Google and Amazon
clouds. URL: http://belaban.blogspot.com/2019/12/
spanning - jgroups - kubernetes - based . html (visited on
03/04/2020).

127

https://docs.microsoft.com/en-us/azure/devops/learn/devops-at-microsoft/
https://docs.microsoft.com/en-us/azure/devops/learn/devops-at-microsoft/
https://docs.microsoft.com/en-us/azure/devops/learn/devops-at-microsoft/
https://doi.org/10.17487/RFC7230
https://rfc-editor.org/rfc/rfc7301.txt
https://rfc-editor.org/rfc/rfc7301.txt
https://doi.org/10.1007/978-3-319-47274-4_33
https://doi.org/10.1109/INFCOMW.2015.7179400
http://ieeexplore.ieee.org/document/7179400/
https://learning.oreilly.com/library/view/learning-apache-openwhisk/9781492046158/
https://learning.oreilly.com/library/view/learning-apache-openwhisk/9781492046158/
https://learning.oreilly.com/library/view/learning-apache-openwhisk/9781492046158/
https://selinuxproject.org/page/Main_Page
https://selinuxproject.org/page/Main_Page
https://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeClassifier.html
http://belaban.blogspot.com/2019/12/spanning-jgroups-kubernetes-based.html
http://belaban.blogspot.com/2019/12/spanning-jgroups-kubernetes-based.html

BIBLIOGRAPHY

[105] StackRox. The State of Container and Kubernetes Security. Tech. rep.
2020.

[106] Submariner project. URL: https://github.com/submariner-
io/submariner (visited on 01/31/2020).

[107] Swarm v. Fleet v. Kubernetes v. Mesos - Swarm v. Fleet v. Kubernetes v.
Mesos [Book]. URL: https://www.oreilly.com/library/
view/swarm-v-fleet/9781492028819/ch01.html (visited
on 01/31/2020).

[108] Swarm v. Fleet v. Kubernetes v. Mesos - Swarm v. Fleet v. Kubernetes v.
Mesos [Book]. URL: https://trends.google.com/trends/
explore?q=Kubernetes,Docker%20swarm,mesos (visited on
01/31/2020).

[109] R. Szumski. Top Kubernetes Operators advancing across the Operator
Capability Model. URL: https : / / blog . openshift . com /
top-kubernetes-operators-advancing-across-the-
operator-capability-model/ (visited on 02/24/2020).

[110] M. Fischetti T. Berners-Lee. Weaving the Web: The Original Design and
Ultimate Destiny of the World Wide Web by Its Inventor. Paw Prints, 2008,
p. 272. ISBN: 1439500363. URL: https://books.google.com/
books?id=Unp4PwAACAAJ{\&}pgis=1.

[111] B. Schiele T. Hunh. “Unsupervised Discovery of Structure in Activity
Data Using Multiple Eigenspaces”. In: Location- and Context-Awareness.
Ed. by Mike Hazas, John Krumm, and Thomas Strang. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2006, 151–167. ISBN: 978-3-540-34151-2.

[112] P. Nauduri T. Laszewski. Migrating to the cloud : Oracle client/server
modernization. Syngress, 2012. ISBN: 9781597496476.

[113] R.L. Rivest C. Stein T.H. Cormen C.E. Leiserson. Introduction to
Algorithms Second Edition. The MIT Press, Cambridge, Massachusetts
London, England, 2001. ISBN: 0-262-03293-7. URL: http://web.
karabuk.edu.tr/hakankutucu/CME222/MIT[1].Press.
Introduction . to . Algorithms . 2nd . Edition . eBook -
TLFeBOOK.pdf.

[114] The netfilter.org project web page. 2018. URL: https : / / www .
netfilter.org/ (visited on 07/28/2018).

[115] The Open Market Internet Index 1995. URL: http://www.treese.
org/intindex/95-11.htm (visited on 08/20/2015).

128

https://github.com/submariner-io/submariner
https://github.com/submariner-io/submariner
https://www.oreilly.com/library/view/swarm-v-fleet/9781492028819/ch01.html
https://www.oreilly.com/library/view/swarm-v-fleet/9781492028819/ch01.html
https://trends.google.com/trends/explore?q=Kubernetes,Docker%20swarm,mesos
https://trends.google.com/trends/explore?q=Kubernetes,Docker%20swarm,mesos
https://blog.openshift.com/top-kubernetes-operators-advancing-across-the-operator-capability-model/
https://blog.openshift.com/top-kubernetes-operators-advancing-across-the-operator-capability-model/
https://blog.openshift.com/top-kubernetes-operators-advancing-across-the-operator-capability-model/
https://books.google.com/books?id=Unp4PwAACAAJ{\&}pgis=1
https://books.google.com/books?id=Unp4PwAACAAJ{\&}pgis=1
http://web.karabuk.edu.tr/hakankutucu/CME222/MIT[1].Press.Introduction.to.Algorithms.2nd.Edition.eBook-TLFeBOOK.pdf
http://web.karabuk.edu.tr/hakankutucu/CME222/MIT[1].Press.Introduction.to.Algorithms.2nd.Edition.eBook-TLFeBOOK.pdf
http://web.karabuk.edu.tr/hakankutucu/CME222/MIT[1].Press.Introduction.to.Algorithms.2nd.Edition.eBook-TLFeBOOK.pdf
http://web.karabuk.edu.tr/hakankutucu/CME222/MIT[1].Press.Introduction.to.Algorithms.2nd.Edition.eBook-TLFeBOOK.pdf
https://www.netfilter.org/
https://www.netfilter.org/
http://www.treese.org/intindex/95-11.htm
http://www.treese.org/intindex/95-11.htm

BIBLIOGRAPHY

[116] TLS Handshake Protocol - Windows applications | Microsoft Docs. URL:
https : / / docs . microsoft . com / en - us / windows /
desktop/SecAuthN/tls- handshake-protocol (visited on
03/08/2019).

[117] topic-3-decision-trees-and-knn. URL: https : / / mlcourse . ai /
articles/topic3-dt-knn/ (visited on 12/09/2019).

[118] Tree Boosting With XGBoost — Why Does XGBoost Win “Every”
Machine Learning Competition? URL: https : / / medium . com /
syncedreview / tree - boosting - with - xgboost - why -
does - xgboost - win - every - machine - learning -
competition-ca8034c0b283 (visited on 12/09/2019).

[119] P.S. Yu V. Cardellini M. Colajanni. Dynamic load balancing on
web-server systems. 1999. DOI: 10.1109/4236.769420.

[120] A. K. Md. Ehsanes. Saleh V. K. Rohatgi. An introduction to probability
and statistics. ISBN: 9781118799642. URL: https://learning.
oreilly . com / library / view / an - introduction - to /
9781118799642/.

[121] Abhishek Verma et al. “Large-scale cluster management at Google with
Borg”. In: Proceedings of the Tenth European Conference on Computer
Systems. 2015, pp. 1–17.

[122] R. Rajamony J. Rubio W. Felter A. Ferreira. “An updated performance
comparison of virtual machines and Linux containers”. In: ISPASS 2015
- IEEE International Symposium on Performance Analysis of Systems
and Software. 2015. ISBN: 9781479919567. DOI: 10.1109/ISPASS.
2015.7095802.

[123] Y. Leung W.K. Wong Z. Guo. Optimizing decision making in the apparel
supply chain using artificial intelligence (AI) : from production to retail.
Woodhead Publishing Ltd, 2013, p. 231. ISBN: 9780857097842. URL:
https : / / learning . oreilly . com / library / view /
optimizing-decision-making/9780857097798/.

[124] XGBoost Documentation — xgboost 1.0.0-SNAPSHOT documentation.
URL: https : / / xgboost . readthedocs . io / en / latest/
(visited on 12/09/2019).

[125] S.J. Fenves Y. Reich. “The potential of machine learning techniques
for expert systems”. In: Artificial Intelligence for Engineering Design,
Analysis and Manufacturing 3.3 (1989), pp. 175–193. ISSN: 0890-0604.
DOI: 10 . 1017 / S0890060400001219. URL: https : / /
www . cambridge . org / core / product / identifier /
S0890060400001219/type/journal{_}article.

129

https://docs.microsoft.com/en-us/windows/desktop/SecAuthN/tls-handshake-protocol
https://docs.microsoft.com/en-us/windows/desktop/SecAuthN/tls-handshake-protocol
https://mlcourse.ai/articles/topic3-dt-knn/
https://mlcourse.ai/articles/topic3-dt-knn/
https://medium.com/syncedreview/tree-boosting-with-xgboost-why-does-xgboost-win-every-machine-learning-competition-ca8034c0b283
https://medium.com/syncedreview/tree-boosting-with-xgboost-why-does-xgboost-win-every-machine-learning-competition-ca8034c0b283
https://medium.com/syncedreview/tree-boosting-with-xgboost-why-does-xgboost-win-every-machine-learning-competition-ca8034c0b283
https://medium.com/syncedreview/tree-boosting-with-xgboost-why-does-xgboost-win-every-machine-learning-competition-ca8034c0b283
https://doi.org/10.1109/4236.769420
https://learning.oreilly.com/library/view/an-introduction-to/9781118799642/
https://learning.oreilly.com/library/view/an-introduction-to/9781118799642/
https://learning.oreilly.com/library/view/an-introduction-to/9781118799642/
https://doi.org/10.1109/ISPASS.2015.7095802
https://doi.org/10.1109/ISPASS.2015.7095802
https://learning.oreilly.com/library/view/optimizing-decision-making/9780857097798/
https://learning.oreilly.com/library/view/optimizing-decision-making/9780857097798/
https://xgboost.readthedocs.io/en/latest/
https://doi.org/10.1017/S0890060400001219
https://www.cambridge.org/core/product/identifier/S0890060400001219/type/journal{_}article
https://www.cambridge.org/core/product/identifier/S0890060400001219/type/journal{_}article
https://www.cambridge.org/core/product/identifier/S0890060400001219/type/journal{_}article

BIBLIOGRAPHY

[126] Zero-downtime Deployment in Kubernetes with Jenkins. URL: https:
//kubernetes.io/blog/2018/04/30/zero-downtime-
deployment-kubernetes-jenkins/ (visited on 03/04/2020).

130

https://kubernetes.io/blog/2018/04/30/zero-downtime-deployment-kubernetes-jenkins/
https://kubernetes.io/blog/2018/04/30/zero-downtime-deployment-kubernetes-jenkins/
https://kubernetes.io/blog/2018/04/30/zero-downtime-deployment-kubernetes-jenkins/

Abstract

Effective solutions for high performance
communication in the cloud

Typical modern application architectures are based on three basic pillars -
a datastore, stateless services and web pages. Deploying high-performance,
stateful systems, such as distributed caches or data grids has always been
challenging. Such applications require additional maintenance tasks such as
monitoring system capacity, configuring backups or testing disaster recovery. The
author proposed four solutions that help with addressing a few of the problems
by lowering the server memory footprint by enabling multi-tenancy, improving
client-server communication performance by using custom binary protocols along
with enabling client side load balancing, and finally, introducing an expert
system to automatically spot common application configuration mistakes. All
the proposed solutions help to increase the overall system throughput and find
configuration mistakes in an automated fashion.

Keywords: Cloud, Kubernetes, Data Grid

Streszczenie

Efektywne rozwiązania dla wysokowydajnej
komunikacji w chmurach

Wiele nowoczesnych systemów informatycznych opartych jest o trzy
podstawowe komponenty - bazę danych, bezstanowe komponenty realizujące
logikę biznesową oraz stronę internetową, która jest interfejsem użytkownika.
Komponenty chmur opartych o kontenery wspierają ten model wytwarzania
systemów. Istnieje również grupa aplikacji wymykających się wcześniej
wspomnianemu podejściu - są to systemy przechowujące dane, w tym systemy
typu “Data Grid”. Systemy te wymagają wykonywania dodatkowych czynności
przy utrzymaniu systemu, takich, jak monitorowanie obciążenia systemu,
konfiguracja wykonywania kopii zapasowych. Autor zaproponował cztery
rozwiązania, które rozwiązują część z wcześniej wymienionych problemów
poprzez: obniżenie ilości konsumowanej pamięci przez serwer systemu
“Data Grid“ (wykorzystując obsługę wielu aplikacji klienckich), zwiększając
przepustowość pomiędzy aplikacją kliencką, a serwerem wykorzystując binarne
protokoły komuikacyjne oraz technikę ”client side load balancing“ oraz
przedstawiając system ekspercki automatycznie znajdujący typowe błędy
konfiguracyjne aplikacji. Wszystkie proponowane rozwiązania pomagają
zwiększyć przepustowość syste mu oraz pomagają zidentyfikować w sposób
automatyczny błędy w konfiguracji.

Słowa kluczowe: Chmura, Chmura obliczeniowa, Kubernetes, Data Grid

	Introduction
	From terminals to cloud computing
	Modern, container-based cloud
	Interconnected clouds
	Recent problems in cloud environments

	Aims of the thesis
	Scientific achievements
	Structure of the thesis

	Related work
	Dynamic load balancing
	Accessing clustered applications deployed
	Network protocols for client/server communication and encryption
	Machine Learning overview
	Expert Systems overview
	Machine Learning in Expert Systems
	Automated cluster maintenance system
	Statistical significance for benchmark results
	Related work discussion

	Proposed solution for service name indication for multi-tenancy routing in cloud environments
	Introduction
	Transport Layer Security with Service Name Indication extension
	Data grid systems and memory consumption

	Proposed solution for identifying tenant using TLS/SNI Hostname field
	Experiment environment description and tools used for the evaluation
	Experiments results
	Results analysis
	Limitations
	Further work

	Proposed solution for exposing clustered applications deployed in the cloud
	Introduction
	Proposed solution for exposing clustered applications deployed in the cloud
	Experiment environment description and tools used for the evaluation
	Experiments results
	Results analysis
	Limitations
	Further work

	Proposed solution for switching communication protocols in the cloud
	Introduction
	Network traffic in container-based clouds
	Multiprotocol applications

	Proposed solution for switching communication protocols
	Experiment environment description and tools used for the evaluation
	Experiments results
	Results analysis
	Limitations
	Further work

	Proposed solution for automatic detection of application misconfiguration
	Introduction
	Machine Learning techniques for classification problems
	Operator Framework
	NoOps initiative
	Modern expert and recommendation systems implementations
	Available metrics for prototype evaluation

	Proposed solution for automatic detection of application misconfiguration
	Experiment environment description and tools used for the evaluation
	Experiments results
	Results analysis
	Limitations
	Future work

	Conclusions
	Glossary
	Appendix
	Infinispan metrics
	Infinispan 9 memory usage

	List of Figures
	List of Tables
	Bibliography
	Abstract
	Streszczenie

