

SUROWE DANE BADAWCZE

RAW RESEARCH DATA

	BADANIA MODELOWE 3D, OBLICZENIA MES I TESTY
	SEJSMICZNYCH TŁUMIKÓW AKUSTYCZNYCH - ETAP 3:
TYTUŁ	BADANIA ANALITYCZNE PO PRZEPROWADZENIU TESTÓW
TTOL	WYTRZYMAŁOŚCIOWYCH TŁUMIKÓW AKUSTYCZNYCH
TITLE	3D MODEL TESTS, FEM CALCULATION AND TESTS OF SEISMIC
	ACOUSTIC SILENCERS - STAGE 3: ANALYTICAL TESTS AFTER
	STRENGTH TESTS OF ACOUSTIC SILENCERS
	PROJEKT POIR 01 01 01-1422/15
PROJEKT	"Opracowanie innowacyjnych rozwiązań dedykowanych systemom
	wentylacyjnym elektrowni jądrowych"
PROJECT	Development of innovative solutions dedicated to the ventilation
	systems of nuclear nower plants"
BADANIE	systems of nuclear power plants
DADAINE	34/POIR
RESEARCH	
DATA	
	30 11 2017
DATE	
	Nucair Technologies Spółka z ograniczoną odpowiedzialnością
ZAMA W IAJĄC I	z siedzibą w Solec Kujawski 86-050, Powstańców 8B
ORDERING	NIP: 5542932702
	REGON: 362931040
KONTRAHENT	UTP University of Science and Technology
	85-796 Bydgoszcz, Poland, al. Kaliskiego 7
CUNIKACIUK	
AUTORZY	
RAPORTU	dr hah inż Dariusz Skihiaki prof UTP
	dr inż. Lukasz Daikowski
REPORT	ui IIIZ. Lukasz i GKUWSKI
AUTHORS	

Spis tabel

Tabela 1. Modele materiałowe i ich parametry	6
Tabela 2. Warunki testów wytrzymałościowych	6
Tabela 3. Porównanie amplitud przemieszczeń eksperymentalnych i obliczeniowych	7
Tabela 4. Porównanie naprężeń eksperymentalnych i obliczeniowych dla przypadku obciążenia nr 5	510
Tabela 5. Porównanie naprężeń eksperymentalnych i obliczeniowych dla przypadku obciążenia nr 6	510
Tabela 6. Porównanie naprężeń eksperymentalnych i obliczeniowych dla przypadku obciążenia nr 7	10

Spis rysunków

Rysunek 1. Widok modelu thumika z przodu	3
Rysunek 7. Widok modelu thumika z bizodu	3
Rysunck 2. Widok modelu tutilika 2 boku	5
Rysunek 3. Widok przekroju bocznego z ukrytymi wkładami	4
Rysunek 4. Szczegół A	4
Rysunek 5. Szczegół B	5
Rysunek 6. Wkłady z wełny mineralnej	5
Rysunek 7. Przyłożone obciążenia - przebieg czasowy przyspieszenia	6
Rysunek 8. Przyłożone obciążenia - przebieg czasowy przemieszczenia (przykład dla częstotliwości	3
Hz i amplitudy 10 mm)	7
Rysunek 9. Przebieg przyspieszenia dla testu nr 1	7
Rysunek 10. Przebieg przyspieszenia dla testu nr 2	8
Rysunek 11. Przebieg przyspieszenia dla testu nr 3	8
Rysunek 12. Przebieg przyspieszenia dla testu nr 4	8
Rysunek 13. Przebieg przyspieszenia dla testu nr 5	9
Rysunek 14. Przebieg przyspieszenia dla testu nr 6	9
Rysunek 15. Przebieg przyspieszenia dla testu nr 9	9
Rysunek 16. Prostokątna rozeta tensometryczna składająca się z tensometrów R1, R2 i R3 1	1
Rysunek 17. Rozmieszczenie czujników przyspieszeń i tensometrów 1	1

Rysunek 1. Widok modelu tłumika z przodu

Rysunek 2. Widok modelu tłumika z boku

Rysunek 3. Widok przekroju bocznego z ukrytymi wkładami

Rysunek 4. Szczegół A

Rysunek 5. Szczegół B

Rysunek 6. Wkłady z wełny mineralnej

Tabela 1. Modele materiałowe i ich parametry

Nazwa	Przykładowe	Typ modelu	Moduł Younga	Gęstość
materiału	zastosowanie		E [GPa]	[kg/m3]
Stal	Blachy, rury,	liniowy	210	7850
	śruby			
Wełna	Wkład V	liniowy	100	35
mineralna 1				
Wełna	Wkład I	liniowy	100	80
mineralna 2				

Tabela 2. Warunki testów wytrzymałościowych

Nr testu	Częstotliwość, [Hz]	Amplituda
		przemieszczenia,
		[mm]
1	3	10
2	3	20
3	6	10
4	9	5
5	12	5
6	15	4
7	18	2

Rysunek 7. Przyłożone obciążenia - przebieg czasowy przyspieszenia

Rysunek 8. Przyłożone obciążenia - przebieg czasowy przemieszczenia (przykład dla częstotliwości 3 Hz i amplitudy 10 mm)

Tabela 3. Porównanie amplitud przemieszczeń eksperymentalnych i obliczeniowych

Nr testu	f	az	aexp1	aexp2	aMES1	aMES2	R1	R2
1	3	10	10.41	10.27	10.02	10.00	3.7	2.6
2	3	20	19.70	22.23	20.18	20.00	2.4	10.0
3	6	10	11.96	10.55	10.23	9.95	14.5	5.7
4	9	5	5.94	5.47	5.44	5.01	8.4	8.4
5	12	5	6.95	5.89	6.69	4.90	3.7	16.8
6	15	4	7.88	4.90	5.64	4.01	28.4	18.2
7	18	2	3.83	2.38	8.50	1.92	121.9	19.3

Rysunek 9. Przebieg przyspieszenia dla testu nr 1

Rysunek 10. Przebieg przyspieszenia dla testu nr 2

Rysunek 11. Przebieg przyspieszenia dla testu nr 3

Rysunek 12. Przebieg przyspieszenia dla testu nr 4

Rysunek 13. Przebieg przyspieszenia dla testu nr 5

Rysunek 14. Przebieg przyspieszenia dla testu nr 6

Rysunek 15. Przebieg przyspieszenia dla testu nr 9

Tabela 4. Porównanie naprężeń eksperymentalnych i obliczeniowych dla przypadku obciążenia nr 5

Eksperyment	σ(R1)	σ(T1)	σ(T2)
max	-2.03	18.99	10.32
min	-5.46	-18.06	-9.89
amp	1.72	18.53	10.10
MES	σ(R1)	σ(T1)	σ(T2)
max	8.43	18.10	11.30
min	-3.73	-0.53	-0.19
amp	6.08	9.32	5.75

Tabela 5. Porównanie naprężeń eksperymentalnych i obliczeniowych dla przypadku obciążenia nr 6

Eksperyment	σ(R1)	σ(T1)	σ(T2)
max	-0.36	30.80	11.89
min	-5.75	-25.09	-17.03
amp	2.70	27.95	14.46
MES	σ(R1)	σ(T1)	σ(T2)
max	11.50	22.2	13.70
min	-12.00	-1.1	-1.75
amp	11.75	11.66	7.73

Tabela 6. Porównanie naprężeń eksperymentalnych i obliczeniowych dla przypadku obciążenia nr 7

Eksperyment	σ(R1)	σ(T1)	σ(T2)
max	-1.04	22.73	9.55
min	-4.71	-20.10	-9.80
amp	1.83	21.42	9.67
MES	σ(R1)	σ(T1)	σ(T2)
max	10.10	19.30	12.60
min	-3.23	-0.57	-0.15
amp	6.67	9.93	6.38

Rysunek 16. Prostokątna rozeta tensometryczna składająca się z tensometrów R1, R2 i R3

Rysunek 17. Rozmieszczenie czujników przyspieszeń i tensometrów