





## **SUROWE DANE BADAWCZE**

## **RAW RESEARCH DATA**

|                | BADANIA MODELOWE 3D, OBLICZENIA MES I TESTY                       |  |  |
|----------------|-------------------------------------------------------------------|--|--|
|                | SEJSMICZNYCH TŁUMIKOW AKUSTYCZNYCH - ETAP 1:                      |  |  |
| TYTUŁ          | BADANIA ANALITYCZNE MODELI 3D – TŁUMIKA<br>AKUSTYCZNEGO           |  |  |
| TITI E         | AKUSTICZNEGO                                                      |  |  |
|                | 3D MODEL TESTS, FEM CALCULATION AND TESTS OF SEISMIC              |  |  |
|                | ACOUSTIC SILENCERS - STAGE 1: ANALYTICAL TESTS OF 3D              |  |  |
|                | MODELS - ACOUSTIC SILENCER                                        |  |  |
|                | PROJEKT POIR 01.01.01-1422/13                                     |  |  |
| PROJEKT        | "Opracowanie innowacyjnych rozwiązań dedykowanych systemom        |  |  |
| DROJECT        | wentylacyjnym elektrowni jądrowych"                               |  |  |
| PROJECT        | "Development of innovative solutions dedicated to the ventilation |  |  |
|                | systems of nuclear power plants"                                  |  |  |
| BADANIE        |                                                                   |  |  |
|                | 34/POIR                                                           |  |  |
| RESEARCH       |                                                                   |  |  |
| DATA           | 20 11 2017                                                        |  |  |
| DATE           | 30.11.2017                                                        |  |  |
| DATE           |                                                                   |  |  |
| ZAMAWIAIACV    | Nucair Technologies Spółka z ograniczoną odpowiedzialnością       |  |  |
| ZAWA W IAJĄC I | z siedzibą w Solec Kujawski 86-050, Powstańców 8B                 |  |  |
| ORDERING       | NIP: 5542932702                                                   |  |  |
|                | KEGOIN: 502951040                                                 |  |  |
| VONTD ALIENT   |                                                                   |  |  |
| KUNIKAHENI     | UTP University of Science and Technology                          |  |  |
| CONTRACTOR     | 85-796 Bydgoszcz, Poland, al. Kaliskiego 7                        |  |  |
| AUTOPZV        |                                                                   |  |  |
| RAPORTI        |                                                                   |  |  |
|                | dr hab. mz. Dariusz Skibicki prof. UTP                            |  |  |
| REPORT         | ar inz. Łukasz Pejkowski                                          |  |  |
| AUTHORS        |                                                                   |  |  |







## Spis tabel

| Tabela 1. Warianty konstrukcyjne                        | . 7 |
|---------------------------------------------------------|-----|
| Tabela 2. Modele materiałowe i ich parametry            | . 9 |
| Tabela 3.Obliczeniowe wartości częstości drgań własnych | 11  |

## Spis rysunków

| Rysunek 1. Widok izometryczny bez ściany przedniej                                                |
|---------------------------------------------------------------------------------------------------|
| Rysunek 2. Widok modelu tłumika z przodu                                                          |
| Rysunek 3. Widok modelu tłumika z boku                                                            |
| Rysunek 4. Widok przekroju bocznego z ukrytymi wkładami5                                          |
| Rysunek 5. Szczegół A                                                                             |
| Rysunek 6. Szczegół B                                                                             |
| Rysunek 7. Wkłady z wełny mineralnej                                                              |
| Rysunek 8.Tłumik T1 700x700x1 000                                                                 |
| Rysunek 9. Tłumik T3 700x700x1000                                                                 |
| Rysunek 10. Tłumik T5 700x700x10009                                                               |
| Rysunek 11. Przyłożone obciążenia - przebieg czasowy wymuszenia typu trzęsienie ziemi             |
| Rysunek 12. Przyłożone obciążenia - widmo częstotliwościowe wymuszenia typu trzęsienie ziemi 10   |
| Rysunek 13. Przyłożone obciążenia - przebieg czasowy ciśnienia modelującego wybuch 10             |
| Rysunek 14. Przyłożone obciążenia - schemat wymuszenia ciśnieniem od wybuchu 10                   |
| Rysunek 15. Postać 1 drgań własnych 11                                                            |
| Rysunek 16. Postać 2 drgań własnych 11                                                            |
| Rysunek 17. Postać 3 drgań własnych 12                                                            |
| Rysunek 18. Postać 4 drgań własnych 12                                                            |
| Rysunek 19. Postać 5 drgań własnych 12                                                            |
| Rysunek 20. Postać 6 drgań własnych 13                                                            |
| Rysunek 21. Postać 7 drgań własnych 13                                                            |
| Rysunek 22. Mapa naprężeń według hipotezy Hubera-Misesa-Hencky'ego dla paneli PP-2 i PP-1, w      |
| czasie wystąpienia wartości ekstremalnej w dolnej części obudowy, tj. 9.69 s; wartości w MPa 14   |
| Rysunek 23. Mapa naprężeń według hipotezy Hubera-Misesa-Hencky'ego dla paneli PP-2 i PP-1, w      |
| czasie wystąpienia wartości ekstremalnej w górnej części obudowy, tj. 9.52 s; wartości w MPa 14   |
| Rysunek 24. Elementy, w których występują największe naprężenia w dolnym panelu PP1 15            |
| Rysunek 25. Elementy, w których występują największe naprężenia w górnym panelu PP1 15            |
| Rysunek 26. Przebieg naprężeń w wybranym elemencie w dolnym panelu PP-1 16                        |
| Rysunek 27. Przebieg naprężeń w wybranym elemencie w górnym panelu PP-1 16                        |
| Rysunek 28. Mapa przemieszczeń dla paneli PP-2 i PP-1, w czasie wystąpienia wartości ekstremalnej |
| w dolnej części obudowy, tj. 9.69 s; wartości w mm 17                                             |
| Rysunek 29. Mapa przemieszczeń dla paneli PP-2 i PP-1, w czasie wystąpienia wartości ekstremalnej |
| w górnej części obudowy, tj. 9.52 s; wartości w mm17                                              |
| Rysunek 30. Przebieg przemieszczeń dla węzła siatki w górnym panelu PP-1, w którym występują      |
| największe wartości przemieszczeń                                                                 |
| Rysunek 31. Przebieg przemieszczeń dla węzła siatki w dolnym panelu PP-1, w którym występują      |
| największe wartości przemieszczeń                                                                 |
| Rysunek 32. Mapa naprężeń w panelach PP-1 i PP-2 w chwili wybuchu 19                              |
| Rysunek 33. Mapa naprężeń w dolnym panelu PP-1 w chwili wybuchu 19                                |

| Rysunek 34. Przebieg naprężenia ekwiwalentnego w elementach, w których występują        | najwyższe |
|-----------------------------------------------------------------------------------------|-----------|
| wartości naprężeń w czasie wybuchu                                                      |           |
| Rysunek 35. Przemieszczenie całkowite w panelach PP-2 w chwili wybuchu                  |           |
| Rysunek 36. Przemieszczenie całkowite w węźle panelu PP-2, dla którego osiąga wartość m | aksymalną |
| w chwili wybuchu                                                                        |           |



Rysunek 1. Widok izometryczny bez ściany przedniej



Rysunek 2. Widok modelu tłumika z przodu



Rysunek 3. Widok modelu tłumika z boku



Rysunek 4. Widok przekroju bocznego z ukrytymi wkładami



Rysunek 5. Szczegół A



Rysunek 6. Szczegół B



Rysunek 7. Wkłady z wełny mineralnej

| Wariant         | Dorforacia | Drzoświt | Wełna mineralna |                     |  |
|-----------------|------------|----------|-----------------|---------------------|--|
| vvariant        | Perioracja | Pizeswit | Warstwa I       | Warstwa II          |  |
| T1 700v700v1000 | Rv 6-8     | 51%      | 30 kg/m³        | 80 kg/m³            |  |
| 1170007000000   |            |          | 40 mm           |                     |  |
| T3 700x700x1000 | By 6.0     | 40%      | 30 kg/m³, 40    | $90 \text{ kg/m}^3$ |  |
|                 | KV 0-9     | 40%      | mm              | 00 Kg/11            |  |
| T5 700x700x1000 | DVEC       | 620/     | 30 kg/m³, 60    | 80 kg/m³            |  |
|                 | KV 3-0     | 03%      | mm              |                     |  |



Rysunek 8.Tłumik T1 700x700x1 000



Rysunek 9.Tłumik T3 700x700x1000



Rysunek 10. Tłumik T5 700x700x1000

| Nazwa                | Przykładowe            | Typ modelu | Moduł Younga | Gęstość |
|----------------------|------------------------|------------|--------------|---------|
| materiału            | zastosowanie           |            | E [GPa]      | [kg/m3] |
| Stal                 | Blachy, rury,<br>śruby | liniowy    | 210          | 7850    |
| Wełna<br>mineralna 1 | Warstwa I              | liniowy    | 100          | 30      |
| Wełna<br>mineralna 2 | Warstwa II             | liniowy    | 100          | 80      |







Rysunek 12. Przyłożone obciążenia - widmo częstotliwościowe wymuszenia typu trzęsienie ziemi



Rysunek 13. Przyłożone obciążenia - przebieg czasowy ciśnienia modelującego wybuch



Rysunek 14. Przyłożone obciążenia - schemat wymuszenia ciśnieniem od wybuchu

| Postać - | Częstotliwość własna <i>f</i> [Hz] |                 |                 |  |
|----------|------------------------------------|-----------------|-----------------|--|
|          | T1 700x700x1000                    | T3 700x700x1000 | T5 700x700x1000 |  |
| 1        | 22.6                               | 22.8            | 22.6            |  |
| 2        | 23.0                               | 23.1            | 23.0            |  |
| 3        | 24.4                               | 24.6            | 24.4            |  |
| 4        | 24.9                               | 25.0            | 24.9            |  |
| 5        | 32.3                               | 29.4            | 32.3            |  |
| 6        | 41.5                               | 41.5            | 41.4            |  |
| 7        | 43.7                               | 43.8            | 43.7            |  |

Tabela 3.Obliczeniowe wartości częstości drgań własnych



Rysunek 15. Postać 1 drgań własnych



Rysunek 16. Postać 2 drgań własnych



Rysunek 17. Postać 3 drgań własnych



Rysunek 18. Postać 4 drgań własnych



Rysunek 19. Postać 5 drgań własnych



Rysunek 20. Postać 6 drgań własnych



Rysunek 21. Postać 7 drgań własnych



Rysunek 22. Mapa naprężeń według hipotezy Hubera-Misesa-Hencky'ego dla paneli PP-2 i PP-1, w czasie wystąpienia wartości ekstremalnej w dolnej części obudowy, tj. 9.69 s; wartości w MPa



Rysunek 23. Mapa naprężeń według hipotezy Hubera-Misesa-Hencky'ego dla paneli PP-2 i PP-1, w czasie wystąpienia wartości ekstremalnej w górnej części obudowy, tj. 9.52 s; wartości w MPa



Rysunek 24. Elementy, w których występują największe naprężenia w dolnym panelu PP1



Rysunek 25. Elementy, w których występują największe naprężenia w górnym panelu PP1



Rysunek 26. Przebieg naprężeń w wybranym elemencie w dolnym panelu PP-1



Rysunek 27. Przebieg naprężeń w wybranym elemencie w górnym panelu PP-1



Rysunek 28. Mapa przemieszczeń dla paneli PP-2 i PP-1, w czasie wystąpienia wartości ekstremalnej w dolnej części obudowy, tj. 9.69 s; wartości w mm



Rysunek 29. Mapa przemieszczeń dla paneli PP-2 i PP-1, w czasie wystąpienia wartości ekstremalnej w górnej części obudowy, tj. 9.52 s; wartości w mm



Rysunek 30. Przebieg przemieszczeń dla węzła siatki w górnym panelu PP-1, w którym występują największe wartości przemieszczeń



Rysunek 31. Przebieg przemieszczeń dla węzła siatki w dolnym panelu PP-1, w którym występują największe wartości przemieszczeń



Rysunek 32. Mapa naprężeń w panelach PP-1 i PP-2 w chwili wybuchu



Rysunek 33. Mapa naprężeń w dolnym panelu PP-1 w chwili wybuchu



Rysunek 34. Przebieg naprężenia ekwiwalentnego w elementach, w których występują najwyższe wartości naprężeń w czasie wybuchu



Rysunek 35. Przemieszczenie całkowite w panelach PP-2 w chwili wybuchu



Rysunek 36. Przemieszczenie całkowite w węźle panelu PP-2, dla którego osiąga wartość maksymalną w chwili wybuchu