

SUROWE DANE BADAWCZE

RAW RESEARCH DATA

	BADANIA MODELOWE I WYTRZYMAŁOŚCIOWE PRZEWODÓW				
	WENTYLACYJNYCH - ETAP 3. BADANIA NUMERYCZNE				
TYTUŁ	WYTRZYMAŁOŚCI NA PRZECIĄŻENIA SEJSMICZNE I				
	WYBUCHOWE				
TITLE	MODEL AND STRENGTH TESTS FOR VENTILATION DUCTS -				
	STAGE 3. NUMERICAL TESTS OF STRENGTH TO SEISMIC AND				
	EXPLOSIVE OVERLOADS				
	PROJEKT POIR 01.01.01-1422/15				
PROJEKT	"Opracowanie innowacyjnych rozwiązań dedykowanych systemom				
	wentylacyjnym elektrowni jądrowych"				
PROJECT					
	"Development of innovative solutions dedicated to the ventilation				
	systems of nuclear power plants"				
BADANIE					
	30/POIR				
RESEARCH					
DATA					
	18.10.2017				
DATE					
	Nucair Technologies Spółka z ograniczoną odpowiedzialnością				
ZAMAWIAJĄCY	z siedzibą w Solec Kujawski 86-050, Powstańców 8B				
ORDERING	NIP: 5542932702				
	REGON: 362931040				
ΚΟΝΤΡ Δ ΠΕΝΤ					
KUNIKATENI	UTP University of Science and Technology				
CONTRACTOR	85-796 Bydgoszcz, Poland, al. Kaliskiego 7				
AUTORZY					
RAPORTU	dr hab. inż. Dariusz Skibicki prof. UTP				
dr inż. Łukasz Pejkowski					
AUTHORS	~				

Spis tabel

Tabela 1. Zrealizowane wymuszenia kinematyczne w ramach symulacji numerycznych	5
Tabela 2. Modele materiałowe i ich parametry	8
Tabela 3. Obliczeniowe wartości częstości drgań własnych	8
Tabela 4. Porównanie z wynikami badań eksperymentalnych	22

Spis rysunków

Rysunek 1. Ciąg wentylacyjny 3 x SQ750x500x150 z symbolicznie zaznaczonymi podparciami w
uchwytach maszyny wytrzymałościowej
Rysunek 2. Wymuszenia w okresie pierwszym – grawitacja ziemska
Rysunek 3. Wymuszenia w okresie drugim - wymuszenie cykliczne podpór dolnych
Rysunek 4. Wymuszenia w okresie drugim - wymuszenie cykliczne podpór górnych z wartością
średnią modelującą zaciśnięcie się uchwytu
Rysunek 5. Wymuszenia w okresie drugim - trzęsienie ziemi
Rysunek 6. Wymuszenie w okresie trzecim - obciążenie ciśnieniem od wybuchu – przebieg czasowy 7
Rysunek 7. Wymuszenie w okresie trzecim - obciążenie ciśnieniem od wybuchu – sposób przyłożenia
obciążenia
Rysunek 8. Wymuszenie w okresie trzecim - obciążenie ciśnieniem od wybuchu – rozkład naporu
wybuchu na ciśnienie
Rysunek 9. Drgania własne - postać pierwsza przy częstości 23.8 Hz
Rysunek 10. Drgania własne postać druga przy częstości 25.3 Hz9
Rysunek 11. Rozmieszczenie punktów pomiarowych: 1 – w miejscu podparcia, 2 – na swobodnym
końcu ciągu kanałów, 3 – w środku kanału, miejscu spodziewanych maksymalnych ugięć
Rysunek 12. Okres 1 - Obciążenie siłą grawitacji – naprężenia zredukowane wg HMH 10
Rysunek 13. Okres 1 - Obciążenie siłą grawitacji. Deformacje kanału w powiększeniu x100 10
Rysunek 14. Okres 2.a - obciążenie wymuszeniem harmonicznym o częstotliwości 3 Hz i amplitudzie
10 mm - przebiegi przemieszczeń w miejscu podparcia 11
Rysunek 15. Okres 2.a - obciążenie wymuszeniem harmonicznym o częstotliwości 3 Hz i amplitudzie
10 mm - przebiegi przemieszczeń w środku kanału 11
Rysunek 16. Okres 2.a - obciążenie wymuszeniem harmonicznym o częstotliwości 3 Hz i amplitudzie
10 mm - przebiegi przemieszczeń końca kanału 12
Rysunek 17. Okres 2.a - obciążenie wymuszeniem harmonicznym o częstotliwości 3 Hz i amplitudzie
10 mm. Przebiegi naprężeń ekwiwalentnych wg HMH w MPa 12
Rysunek 18. Okres 2.a - obciążenie wymuszeniem harmonicznym o częstotliwości 3 Hz i amplitudzie
20 mm - przebiegi przemieszczeń w miejscu podparcia 13
Rysunek 19. Okres 2.a - obciążenie wymuszeniem harmonicznym o częstotliwości 3 Hz i amplitudzie
20 mm - przebiegi przemieszczeń w środku kanału 13
Rysunek 20. Okres 2.a - obciążenie wymuszeniem harmonicznym o częstotliwości 3 Hz i amplitudzie
20 mm - przebiegi przemieszczeń końca kanału 14
Rysunek 21. Okres 2.a - obciążenie wymuszeniem harmonicznym o częstotliwości 3 Hz i amplitudzie
20 mm. Przebiegi naprężeń ekwiwalentnych wg HMH w MPa14
Rysunek 22. Okres 2.a - obciążenie wymuszeniem harmonicznym o częstotliwości 6 Hz i amplitudzie
10 mm - przebiegi przemieszczeń w miejscu podparcia 15
Rysunek 23. Okres 2.a - obciążenie wymuszeniem harmonicznym o częstotliwości 6 Hz i amplitudzie
10 mm - przebiegi przemieszczeń w środku kanału
Rysunek 24. Okres 2.a - obciążenie wymuszeniem harmonicznym o częstotliwości 6 Hz i amplitudzie
10 mm - przebiegi przemieszczeń końca kanału
Rysunek 25. Okres 2.a - obciążenie wymuszeniem harmonicznym o częstotliwości 6 Hz i amplitudzie
10 mm. Przebiegi naprężeń ekwiwalentnych wg HMH w MPa16

Rysunek 26. Okres 2.a - obciążenie wymuszeniem harmonicznym o częstotliwości 12 Hz i
amplitudzie 5 mm przebiegi przemieszczeń w miejscu podparcia 17
Rysunek 27. Okres 2.a - obciążenie wymuszeniem harmonicznym o częstotliwości 12 Hz i
amplitudzie 5 mm przebiegi przemieszczeń w środku kanału
Rysunek 28. Okres 2.a - obciążenie wymuszeniem harmonicznym o częstotliwości 12 Hz i
amplitudzie 5 mm przebiegi przemieszczeń końca kanału
Rysunek 29. Okres 2.a - obciążenie wymuszeniem harmonicznym o częstotliwości 12 Hz i
amplitudzie 5 mm. Przebiegi napreżeń ekwiwalentnych wg HMH w MPa
Rysunek 30. Okres 2.a - obciażenie wymuszeniem harmonicznym o czestotliwości 12 Hz i
amplitudzie 10 mm. Deformacie kanału
Rysunek 31. Okres 2.a - obcjażenie wymuszeniem harmonicznym o czestotliwości 12 Hz i
amplitudzie 10 mm. Mapa napreżeń ekwiwalentnych wg HMH w MPa
Rysunek 32. Okres 2.a - obciażenie wymuszeniem harmonicznym o czestotliwości 12 Hz i
amplitudzie 10 mm. Maksymalne napreżenia ekwiwalentne wg HMH w MPa
Rysunek 33. Okres 2.a - obcjażenie wymuszeniem harmonicznym o czestotliwości 12 Hz i
amplitudzie 10 mm. Miejsce występowania maksymalnych odkształceń plastycznych 21
Rysunek 34 Okres 2 a - obcjażenie wymuszeniem harmonicznym o czestotliwości 12 Hz i
amplitudzie 10 mm. Historia przyrostów maksymalnych odkształceń plastycznych 21
Rysunek 35. Porównanie wyników przemieszczeń w eksperymencie i symulacji MES dla punktu 1. 22
Rysunek 36. Porównanie wyników przemieszczeń w eksperymencie i symulacji MES dla punktu 1. 22 Rysunek 36. Porównanie wyników przemieszczeń w eksperymencie i symulacji MES dla punktu 2. 23
Rysunck 30. Forownanie wynków przemieszczeń w eksperymencie i symulacji MES dla punktu 2. 23 Pysunek 37. Porównanie wyników przemieszczeń w eksperymencie i symulacji MES dla punktu 2. 23
Rysunck 37. Forowname wymkow przemieszczen w eksperymencie i symulacji wies dla punktu 5. 25 Pusunck 38. Okros 2. obciożania trzesianiam ziami o wartości 10G. Przebiagi czesowa
mysunek 56. Oktes 2 - obciążenie użęsienieni zienii o watości 100. Fizeolegi czasowe
maksymaniyen wartoset naprężen ekwiwalentnych i naprężen zredukowanych wg riwiri Kanał P_100
R-100
makaymalnych wartości naprożeń akuyiwalantnych i naprożeń zradukowanych wa HMH – Kanał P-0
maksymaniyen wartoset naprężen ekwiwalentnych i naprężen zredukowanych wg mwni Kanał K–0
Ryounal 40 Okros 2 chaintania tracioniam ziami a wartaćaj 10G - Przemioszazania w nunkcja 2
[mm] 25
[IIIII]
[mm]
[1111]
rysuliek 42. Okies 2 - obciążenie użęsienieni zienii o wartości 100. Fizebiegi czasowe ouksztarcen
prastycznych
Rysunek 45. Okres 2.a - obciążenie użęsienieni zienii o wartości 100. Mapy ouksztatem i naprężeni alwiwalantzwał w ozosia wystaniania jak malysymalzych wartości t. dla t=0.5 s doformacja konały
ekwiwalentnych w czasie wystąpienia ich maksymalnych wartosci i. dia $t=9.5$ s deformacje kanału,
powiększenie x50 [inin]
Rysunek 44. Okres 2.a - obciążenie irzęsieniem ziemi o wartości 10G. Mapy odkształcen i naprężen
ekwiwalentnych w czasie wystąpienia ich maksymalnych wartosci i. dia t=9.5 s napręzenia
Zredukowane, powiększenie x10, [MPa]
Rysunek 45. Okres 3 – obciążenie cisnieniem od wybuchu. Mapy odkształcen i naprężen
ekwiwalentnych w czasie wystąpienia ich maksymalnych wartosci dla kanały R0 mapy naprężen
zredukowanych wg HMH w MPa
Rysunek 46. Okres 3 – obciązenie cisnieniem od wybuchu. Mapy odkształcen i naprężen
ekwiwalentnych w czasie wystąpienia ich maksymalnych wartości dla kanały R0 historia naprężeń
zredukowanych wg HMH w MPa
Rysunek 4/. Okres 3 – obciążenie ciśnieniem od wybuchu. Mapy odkształceń i naprężeń
ekwiwalentnych w czasie wystąpienia ich maksymalnych wartości dla kanały R0 mapy deformacji
kanału w mm
Rysunek 48. Okres 3 – obciążenie ciśnieniem od wybuchu. Mapy odkształceń i naprężeń
ekwıwalentnych w czasie wystąpienia ich maksymalnych wartości dla kanały R0 historia deformacji
kanału w mm

Rysunek 49. Okres 3 – obciążenie ciśnieniem od wybuchu. Mapy odkształceń i naprężeń
ekwiwalentnych w czasie wystąpienia ich maksymalnych wartości dla kanały R100 mapy naprężeń
zredukowanych wg HMH w MPa 29
Rysunek 50. Okres 3 – obciążenie ciśnieniem od wybuchu. Mapy odkształceń i naprężeń
ekwiwalentnych w czasie wystąpienia ich maksymalnych wartości dla kanały R100 historia
naprężeń zredukowanych wg HMH w MPa 30
Rysunek 51. Okres 3 – obciążenie ciśnieniem od wybuchu. Mapy odkształceń i naprężeń
ekwiwalentnych w czasie wystąpienia ich maksymalnych wartości dla kanały R100 mapy
deformacji kanału w mm
Rysunek 52. Okres 3 – obciążenie ciśnieniem od wybuchu. Mapy odkształceń i naprężeń
ekwiwalentnych w czasie wystąpienia ich maksymalnych wartości dla kanały R100 historia
deformacji kanału w mm

Rysunek 1. Ciąg wentylacyjny 3 x SQ750x500x150 z symbolicznie zaznaczonymi podparciami w uchwytach maszyny wytrzymałościowej

Tabela 1. Zrealizowane wymuszenia kinematyczne w ramach symulacji numerycznych

Częstotliwość	Amplituda			
3 Hz	10 mm			
3 Hz	20 mm			
6 Hz	10 mm			
12 Hz	5 mm			
12 Hz	10 mm			

Rysunek 2. Wymuszenia w okresie pierwszym – grawitacja ziemska

Rysunek 3. Wymuszenia w okresie drugim - wymuszenie cykliczne podpór dolnych

Rysunek 4. Wymuszenia w okresie drugim - wymuszenie cykliczne podpór górnych z wartością średnią modelującą zaciśnięcie się uchwytu

Rysunek 5. Wymuszenia w okresie drugim - trzęsienie ziemi

Rysunek 6. Wymuszenie w okresie trzecim - obciążenie ciśnieniem od wybuchu - przebieg czasowy

Rysunek 7. Wymuszenie w okresie trzecim - obciążenie ciśnieniem od wybuchu – sposób przyłożenia obciążenia

Rysunek 8. Wymuszenie w okresie trzecim - obciążenie ciśnieniem od wybuchu – rozkład naporu wybuchu na ciśnienie

Tabela 2. Modele materiałowe i ich parametry

Nazwa materiału	ału Typ modelu Moduł Granica E [GPa] Sy [MPa]		Granica wytrzymałości Su [MPa]	Gęstość ton/mm ³		
S220GD	GD bilinearny 190 220		220	300	7.850e-009	

Tabela 3. Obliczeniowe wartości częstości drgań własnych

Na postaci dragań wlasnych	Częstotliwość własna [Hz]				
1	23.8				
2	25.3				
3	39.0				
4	39.1				

Rysunek 9. Drgania własne - postać pierwsza przy częstości 23.8 Hz

Rysunek 10. Drgania własne postać druga przy częstości 25.3 Hz

Rysunek 11. Rozmieszczenie punktów pomiarowych: 1 – w miejscu podparcia, 2 – na swobodnym końcu ciągu kanałów, 3 – w środku kanału, miejscu spodziewanych maksymalnych ugięć

Rysunek 12. Okres 1 - Obciążenie siłą grawitacji - naprężenia zredukowane wg HMH

Ž_x

Rysunek 13. Okres 1 - Obciążenie siłą grawitacji. Deformacje kanału w powiększeniu x100.

Rysunek 14. Okres 2.a - obciążenie wymuszeniem harmonicznym o częstotliwości 3 Hz i amplitudzie 10 mm - przebiegi przemieszczeń w miejscu podparcia

Rysunek 15. Okres 2.a - obciążenie wymuszeniem harmonicznym o częstotliwości 3 Hz i amplitudzie 10 mm - przebiegi przemieszczeń w środku kanału

Rysunek 16. Okres 2.a - obciążenie wymuszeniem harmonicznym o częstotliwości 3 Hz i amplitudzie 10 mm - przebiegi przemieszczeń końca kanału

Rysunek 17. Okres 2.a - obciążenie wymuszeniem harmonicznym o częstotliwości 3 Hz i amplitudzie 10 mm. Przebiegi naprężeń ekwiwalentnych wg HMH w MPa.

Rysunek 18. Okres 2.a - obciążenie wymuszeniem harmonicznym o częstotliwości 3 Hz i amplitudzie 20 mm - przebiegi przemieszczeń w miejscu podparcia

Rysunek 19. Okres 2.a - obciążenie wymuszeniem harmonicznym o częstotliwości 3 Hz i amplitudzie 20 mm - przebiegi przemieszczeń w środku kanału

Rysunek 20. Okres 2.a - obciążenie wymuszeniem harmonicznym o częstotliwości 3 Hz i amplitudzie 20 mm - przebiegi przemieszczeń końca kanału

Rysunek 21. Okres 2.a - obciążenie wymuszeniem harmonicznym o częstotliwości 3 Hz i amplitudzie 20 mm. Przebiegi naprężeń ekwiwalentnych wg HMH w MPa.

Rysunek 22. Okres 2.a - obciążenie wymuszeniem harmonicznym o częstotliwości 6 Hz i amplitudzie 10 mm - przebiegi przemieszczeń w miejscu podparcia

Rysunek 23. Okres 2.a - obciążenie wymuszeniem harmonicznym o częstotliwości 6 Hz i amplitudzie 10 mm - przebiegi przemieszczeń w środku kanału

Rysunek 24. Okres 2.a - obciążenie wymuszeniem harmonicznym o częstotliwości 6 Hz i amplitudzie 10 mm - przebiegi przemieszczeń końca kanału

Rysunek 25. Okres 2.a - obciążenie wymuszeniem harmonicznym o częstotliwości 6 Hz i amplitudzie 10 mm. Przebiegi naprężeń ekwiwalentnych wg HMH w MPa.

Rysunek 26. Okres 2.a - obciążenie wymuszeniem harmonicznym o częstotliwości 12 Hz i amplitudzie 5 mm. - przebiegi przemieszczeń w miejscu podparcia

Rysunek 27. Okres 2.a - obciążenie wymuszeniem harmonicznym o częstotliwości 12 Hz i amplitudzie 5 mm. - przebiegi przemieszczeń w środku kanału

Rysunek 28. Okres 2.a - obciążenie wymuszeniem harmonicznym o częstotliwości 12 Hz i amplitudzie 5 mm. - przebiegi przemieszczeń końca kanału

Rysunek 29. Okres 2.a - obciążenie wymuszeniem harmonicznym o częstotliwości 12 Hz i amplitudzie 5 mm. Przebiegi naprężeń ekwiwalentnych wg HMH w MPa.

Rysunek 30. Okres 2.a - obciążenie wymuszeniem harmonicznym o częstotliwości 12 Hz i amplitudzie 10 mm. Deformacje kanału.

Rysunek 31. Okres 2.a - obciążenie wymuszeniem harmonicznym o częstotliwości 12 Hz i amplitudzie 10 mm. Mapa naprężeń ekwiwalentnych wg HMH w MPa.

Rysunek 32. Okres 2.a - obciążenie wymuszeniem harmonicznym o częstotliwości 12 Hz i amplitudzie 10 mm. Maksymalne naprężenia ekwiwalentne wg HMH w MPa.

Rysunek 33. Okres 2.a - obciążenie wymuszeniem harmonicznym o częstotliwości 12 Hz i amplitudzie 10 mm. Miejsce występowania maksymalnych odkształceń plastycznych.

Rysunek 34. Okres 2.a - obciążenie wymuszeniem harmonicznym o częstotliwości 12 Hz i amplitudzie 10 mm. Historia przyrostów maksymalnych odkształceń plastycznych.

Częstotliwość	Przemieszczenie	Przyspieszenie	1		2		3	
[Hz]	[mm]	[m/s ²]	exp	mes	exp	mes	exp	mes
1	2	3	4	5	6	7	8	9
3	10	3.6	9.99	10	10.9	8.1	16.9	10.9
3	20	7.1	20.4	20	21.8	21	30.9	22.5
6	10	14.2	10.2	9.5	11.6	10.2	14.7	11.6
12	5	28.4	5.28	5	7.0	6.7	10.6	10.8
12	10	56.9	X	X	X	X	X	X

Tabela 4. Porównanie z wynikami badań eksperymentalnych

Rysunek 35. Porównanie wyników przemieszczeń w eksperymencie i symulacji MES dla punktu 1.

Rysunek 36. Porównanie wyników przemieszczeń w eksperymencie i symulacji MES dla punktu 2.

Rysunek 37. Porównanie wyników przemieszczeń w eksperymencie i symulacji MES dla punktu 3.

Rysunek 38. Okres 2 - obciążenie trzęsieniem ziemi o wartości 10G. Przebiegi czasowe maksymalnych wartości naprężeń ekwiwalentnych i naprężeń zredukowanych wg HMH. - Kanał R=100

Rysunek 39. Okres 2 - obciążenie trzęsieniem ziemi o wartości 10G. Przebiegi czasowe maksymalnych wartości naprężeń ekwiwalentnych i naprężeń zredukowanych wg HMH. - Kanał R=0

Rysunek 40. Okres 2 - obciążenie trzęsieniem ziemi o wartości 10G. - Przemieszczenia w punkcie 2 [mm]

Rysunek 41. Okres 2 - obciążenie trzęsieniem ziemi o wartości 10G. - Przemieszczenia w punkcie 3 [mm]

Rysunek 42. Okres 2 - obciążenie trzęsieniem ziemi o wartości 10G. Przebiegi czasowe odkształceń plastycznych.

Rysunek 43. Okres 2.a - obciążenie trzęsieniem ziemi o wartości 10G. Mapy odkształceń i naprężeń ekwiwalentnych w czasie wystąpienia ich maksymalnych wartości t. dla t=9.5 s.- deformacje kanału, powiększenie x50 [mm]

Rysunek 44. Okres 2.a - obciążenie trzęsieniem ziemi o wartości 10G. Mapy odkształceń i naprężeń ekwiwalentnych w czasie wystąpienia ich maksymalnych wartości t. dla t=9.5 s. - naprężenia zredukowane, powiększenie x10, [MPa]

Rysunek 45. Okres 3 – obciążenie ciśnieniem od wybuchu. Mapy odkształceń i naprężeń ekwiwalentnych w czasie wystąpienia ich maksymalnych wartości dla kanały R0. - mapy naprężeń zredukowanych wg HMH w MPa

Rysunek 46. Okres 3 – obciążenie ciśnieniem od wybuchu. Mapy odkształceń i naprężeń ekwiwalentnych w czasie wystąpienia ich maksymalnych wartości dla kanały R0. - historia naprężeń zredukowanych wg HMH w MPa

Rysunek 47. Okres 3 – obciążenie ciśnieniem od wybuchu. Mapy odkształceń i naprężeń ekwiwalentnych w czasie wystąpienia ich maksymalnych wartości dla kanały R0. - mapy deformacji kanału w mm

Rysunek 48. Okres 3 – obciążenie ciśnieniem od wybuchu. Mapy odkształceń i naprężeń ekwiwalentnych w czasie wystąpienia ich maksymalnych wartości dla kanały R0. - historia deformacji kanału w mm

Rysunek 49. Okres 3 – obciążenie ciśnieniem od wybuchu. Mapy odkształceń i naprężeń ekwiwalentnych w czasie wystąpienia ich maksymalnych wartości dla kanały R100. - mapy naprężeń zredukowanych wg HMH w MPa

Rysunek 50. Okres 3 – obciążenie ciśnieniem od wybuchu. Mapy odkształceń i naprężeń ekwiwalentnych w czasie wystąpienia ich maksymalnych wartości dla kanały R100. - historia naprężeń zredukowanych wg HMH w MPa

Rysunek 51. Okres 3 – obciążenie ciśnieniem od wybuchu. Mapy odkształceń i naprężeń ekwiwalentnych w czasie wystąpienia ich maksymalnych wartości dla kanały R100. - mapy deformacji kanału w mm

Rysunek 52. Okres 3 – obciążenie ciśnieniem od wybuchu. Mapy odkształceń i naprężeń ekwiwalentnych w czasie wystąpienia ich maksymalnych wartości dla kanały R100. - historia deformacji kanału w mm