

SUROWE DANE BADAWCZE

RAW RESEARCH DATA

	WALIDACJA PO TESTACH NR III MODELU M6 KLAPY
	POŻAROWEJ Z NAPĘDEM 90 ST. SCHISCHEK – BADANIA
TYTUŁ	UZUPEŁNIAJĄCE DO UMOWY Z ZAPYTANIA POIR 19
TITLE	VALIDATION AFTER TESTS III OF THE M6 MODEL FIRE
	DAMPER WITH 90 ST. DRIVE SCHISCHEK - COMPLEMENTARY
	TESTS FOR THE AGREEMENT FROM INQUIRY POIR 19
	PROJEKT POIR 01.01.01-1422/15
PROIFKT	Opracowanie innowacyjnych rozwiazań dedykowanych systemom
IROULIRI	wentylacvinym elektrowni jadrowych"
PROJECT	······································
INCOLUI	"Development of innovative solutions dedicated to the ventilation
	systems of nuclear power plants"
BADANIE	
	19/POIR
RESEARCH	
DATA	
	30.05.2018
DATE	
ZAMAWIAIACV	Nucair Technologies Spółka z ograniczoną odpowiedzialnością
ZAMA W IAJĄC I	z siedzibą w Solec Kujawski 86-050, Powstańców 8B
ORDERING	NIP: 5542932702
	REGON: 362931040
ΚΟΝΤΡΛΗΕΝΤ	
KONTRAILINI	UTP University of Science and Technology
CONTRACTOR	85-796 Bydgoszcz, Poland, al. Kaliskiego 7
AUTOKZY	
KAPOKTU	dr hab. inż. Dariusz Skibicki prof. UTP
REPORT	dr inż. Łukasz Pejkowski
AUTHORS	

Spis tabel

Tabela 1. Modele materiałowe i ich parametry	. 4
Tabela 2. Warianty zrealizowanych wymuszeń	. 6
Tabela 3. Porównanie przemieszczeń eksperymentalnych i obliczeniowych	. 6
Tabela 4. Porównanie naprężeń zmierzonych i obliczeniowych w punkcie 1_1	. 7

Spis rysunków

Rysunek 1. Widok przestrzenny klapy - widok ogólny	3
Rysunek 2. Widok przestrzenny klapy - widok powiększony układu dźwigni oraz kątowników	
mocujących klapę	3
Rysunek 3. Szczegóły	4
Rysunek 4. Prędkości odkształcenia ekwiwalentnego osi klapy	5
Rysunek 5. Przyłożone obciążenia - grawitacja	5
Rysunek 6. Przyłożone obciążenia – wymuszenie	5
Rysunek 7. Położenie punktów pomiarowych	6
Rysunek 8. Przebieg przyspieszeń punktu ail dla przypadku 7Hz i 10 mm.	7
Rysunek 9. Mapa przemieszczeń płyty	7
Rysunek 10. Odkształcenie plastyczne osi	8

Rysunek 1. Widok przestrzenny klapy - widok ogólny

Rysunek 2. Widok przestrzenny klapy - widok powiększony układu dźwigni oraz kątowników mocujących klapę

Rysunek 3. Szczegóły

rabela 1. Woucle materialowe i len parametry	Tabela	1. Modele	materialowe	i ich	parametry
--	--------	-----------	-------------	-------	-----------

Nazwa materiału	Przykładowe zastosowanie	Typ modelu	Moduł Younga E [GPa]	Granica plastyczności Sy [MPa]	Granica wytrzymałości Su [MPa]	Gęstość ton/mm ³
S220GD	blachy	bilinearny	190	220	300	7.850e- 009
\$355	wałki, ceowniki, czop	bilinearny	190	345	470	7.850e- 009
CuSn8	tuleje łożyska	bilinearny	190	280	450	8.800e- 009
PROMATECT®- H	płyta ogniotrwała	liniowy	4.2		4.8	8.700e- 010

Rysunek 4. Prędkości odkształcenia ekwiwalentnego osi klapy

Rysunek 5. Przyłożone obciążenia - grawitacja

Rysunek 6. Przyłożone obciążenia - wymuszenie

Nr w	Częstotliwość [Hz]	Amplituda [mm]
3	3	10
2	6	10
1	12	3
4	15	2

Tabela 2. Warianty zrealizowanych wymuszeń

Rysunek 7. Położenie punktów pomiarowych

Tabela 3	Porównanie	nrzemieszczeń	eksnervmenta	Invch i	obliczeniowyc	h
Tabela J.	Forowname	przemieszczen	eksperymenta	myen r	obliczeniowyc	п

Częstotliwość [Hz]	Amplituda [mm]	Punkt pomiarowy	wartość eksperymentalna [mm]	wartość obliczeniowa [mm]
	10	aiO	9.85	(10.00)
2		ai1	11.26	10.21
5		ai2	10.70	9.89
		ai3	10.98	9.67
5	5	ai0	4.86	(5.00)
		ai1	7.09	5.68
		ai2	6.38	5.21
		ai3	5.62	4.87
	10	ai0	9.82	(10.00)
7		ai1	15.50	15.14
/		ai2	18.09	11.04
		ai3	25.84	8.19

Rysunek 8. Przebieg przyspieszeń punktu ai1 dla przypadku 7Hz i 10 mm.

Rysunek 9. Mapa przemieszczeń płyty

Częstotliwość [Hz]	Amplituda [mm]	wartość eksperymentalna [MPa]	wartość obliczeniowa [MPa]
3	10	0.5	0.9
5	5	1.2	1.4
7	10	5.4	10.3

Tabela 4. Porównanie naprężeń zmierzonych i obliczeniowych w punkcie 1_1

Rysunek 10. Odkształcenie plastyczne osi