

SUROWE DANE BADAWCZE

RAW RESEARCH DATA

TYTUŁ	BADANIA ANALITYCZNE MODELI 3D KLAPY PRZECIWPOŻAROWEJ – ETAP II, WALIDACJA PO TESTACH, PIĄTY MODEL KOŃCOWY
TITLE	ANALYTICAL TESTING OF 3D MODELS OF THE FIRE DAMPER - STAGE II, VALIDATION AFTER TESTS, THE FIFTH FINAL MODEL
PROJEKT PROJECT	PROJEKT POIR 01.01.01-1422/15
BADANIE RESEARCH	20/POIR
DATA DATE	15.12.2017
ZAMAWIAJĄCY ORDERING	Nucair Technologies Spółka z ograniczoną odpowiedzialnością z siedzibą w Solec Kujawski 86-050, Powstańców 8B NIP: 5542932702 REGON: 362931040
KONTRAHENT CONTRACTOR	UTP University of Science and Technology 85-796 Bydgoszcz, Poland, al. Kaliskiego 7
AUTORZY RAPORTU	dr hab. inż. Dariusz Skibicki prof. UTP
REPORT AUTHORS	dr inż. Łukasz Pejkowski

Spis tabel

Tabela 1. Modele materiałowe i ich parametry	5
Tabela 2. Zrealizowane warianty wymuszeń	7
Tabela 3. Porównanie przyspieszeń eksperymentalnych i obliczeniowych – prototyp 1	7
$Tabela \ 4. \ Por{\acute{o}}wnanie \ odkształce{\acute{n}} \ zmierzonych \ i \ obliczeniowych \ w \ punkcie \ 1_1-prototyp \ 1 \$	8
Tabela 5. Porównanie przyspieszeń eksperymentalnych i obliczeniowych - prototyp 2	8
Tabela 6. Porównanie naprężeń zmierzonych i obliczeniowych w punkcie 1_1 - prototyp 2	9

Spis rysunków

Rysunek 1. Widok boczny klapy	4
Rysunek 2. Widok od czoła klapy wraz z ramą mocowania do siłownika maszyny wytrzymałości	lowej
	4
Rysunek 3. Szczegóły	5
Rysunek 4. Prototyp drugi	5
Rysunek 5. Prędkości odkształcenia ekwiwalentnego osi klapy	6
Rysunek 6. Przyłożone obciążenia – grawitacja	6
Rysunek 7. Przyłożone obciążenia – wymuszenie	7

Rysunek 1. Widok boczny klapy

Rysunek 2. Widok od czoła klapy wraz z ramą mocowania do siłownika maszyny wytrzymałościowej

Rysunek 3. Szczegóły

Rysunek 4. Prototyp drugi

Tabela 1. Modele materiałowe i ich parametry

Nazwa materiału	Przykładowe zastosowanie	Typ modelu	Moduł Younga E [GPa]	Granica plastyczności Sy [MPa]	Granica wytrzymałośc i Su [MPa]	Gęstość ton/mm3
S220GD	blachy	bilinearny	190	220	300	7.850e-009
S355	wałki, ceowniki, czop	bilinearny	190	345	470	7.850e-009
CuSn8	tuleje łożyska	bilinearny	190	280	450	8.800e-009
PROMATECT® -H	płyta ogniotrwała	liniowy	4.2		4.8	8.700e-010

Rysunek 5. Prędkości odkształcenia ekwiwalentnego osi klapy

Rysunek 6. Przyłożone obciążenia – grawitacja

Rysunek 7. Przyłożone obciążenia - wymuszenie

Tabela 2. Zrealizowane warianty wymuszeń

Nr w	Częstotliwość [Hz]	Amplituda [mm]
3	3	10
2	6	10
1	12	3
4	15	2

Tabela 3. Porównanie przyspieszeń eksperymentalnych i obliczeniowych - prototyp 1

Częstotliwość [Hz]	Amplituda [mm]	Punkt pomiarowy	wartość eksperymentalna [m/s/s]	wartość obliczeniowa [m/s/s]
	10	aiO	3.3	(3.55)
3	10	ai1	3.5	4.3
5	10	ai2	3.4	4.3
	10	ai3	3.6	4.3
6	10	ai0	13.7	(14.2)
	10	ai1	19.0	17.8
	10	ai2	15.3	14.8
	10	ai3	15.7	14.8
12	3	ai0	14.2	(17.05)
	3	ai1	42.6	48
	3	ai2	24.8	23
	3	ai3	18.1	20
15	2	aiO	7.7	(17.7)
	2	ail	50.6	52.4
	2	ai2	40.2	36.6
	2	ai3	34.4	21.1

Częstotliwość [Hz]	Amplituda [mm]	Wartość eksperymentalna [µm/m]	Wartość obliczeniow a [µm/m]	Różnica [µm/m]	Różnica [MPa]
3	10	16.5	17.5	1	0.2
6	10	328	39.5	-288.5	-60.6
12	3	154	179	25	5.3
15	2	172	126	-46	-9.7

Tabela 4. Porównanie odkształceń zmierzonych i obliczeniowych w punkcie 1_1 – prototyp 1

	Tabela 5. Poró	wnanie prz	zyspieszeń	eksperymer	ntalnych i ol	bliczeniowych	- prototyp 2
--	----------------	------------	------------	------------	---------------	---------------	--------------

Dedante	Createtlinuaáá	Amplituda	Punkt	Punkt wartość pomiarow eksperymentalna		wartość	
Badanie			pomiarow			obliczeniowa	
III.	[HZ]	[11111]	У	[m/s2]	max G	[m/s2]	max G
			ai0	1.9		1.8	
1	3	5	ai1	2.8	0.3	1.8	0.2
1	5	5	ai2	2.7		1.7	
			ai3	2.8		1.7	
			ai0	3.5		3.6	
2	3	10	ai 1	3.5		3.5	
2	5	10	ai2	4.2		3.5	
			ai3	5.0	0.5	3.6	0.4
			ai0	6.9		7.1	
3	6	5	ai1	12.0	1.2	8.7	0.9
5	0	5	ai2	8.0		7.5	
			ai3	7.7		6.7	
		10	aiO	14.0		14.0	
4	6		ai1	22.0	2.2	18.0	1.8
4			ai2	14.5		14.9	
			ai3	8.5		13.2	
		5	ai0	14.5		16.0	
5	9		ai 1	30.0	3.1	36.8	3.7
5			ai2	23.3		19.5	
			ai3	18		9.9	
6			ai0	30.5		28	
	12	5	ai 1	70.0	7.1	68.7	7.0
	12	3	ai2	52.0		42.6	
			ai3	38.5		14.0	
			ai0	26.0		27.0	
7	15	3	ai1	130.0	13.1	100.0	10.2
/	15	5	ai2	100.0		70.0	
			ai3	80.0		45.0	

Badanie nr	Częstotliwość [Hz]	Amplituda [mm]	Wartość eksperymentalna [MPa]	Wartość obliczeniow a [MPa]	Różnica [MPa]
1	3	5	3	4	-1
2	3	10	16	16	0
3	6	5	22	19	3
4	5	10	31	38	-7
5	9	5	16	16	0
6	12	5	23	17	7
7	15	3	29	50	-21

Tabela 6. Porównanie naprężeń zmierzonych i obliczeniowych w punkcie 1_1 - prototyp2