POSTĘPY w INŻYNIERII MECHANICZNEJ DEVELOPMENTS IN MECHANICAL ENGINEERING 4(2)/2014, 13-22 Czasopismo naukowo-techniczne – Scientific-Technical Journal

Łukasz PEJKOWSKI, Dariusz SKIBICKI

KRYTERIUM ZMĘCZENIOWE DLA ZŁOŻONYCH OBCIĄŻEŃ SINUSOIDALNYCH Z PRZESUNIĘCIEM FAZOWYM

Streszczenie: W pracy przedstawiono propozycję nowego kryterium zmęczeniowego dla obciążeń nieproporcjonalnych, uwzględniającego wpływ wartości kąta przesunięcia fazowego δ i stosunku amplitud naprężenia stycznego i normalnego λ na trwałość zmęczeniową.

Słowa kluczowe: zmęczenie materiałów, zmęczenie wieloosiowe, trwałość zmęczeniowa, obciążenia nieproporcjonalne, kryterium zmęczeniowe

1. WSTĘP

Dla znacznej liczby materiałów zauważyć można negatywny wpływ nieproporcjonalnych przebiegów czasowych składowych stanu naprężenia na trwałość zmęczeniową [2, 5]. Może zostać wywołana np. przez okresowe przebiegi obciążenia przesunięte w fazie (rys. 1a), asynchroniczne przebiegi okresowe (rys. 1b) oraz przebiegi losowe (rys. 1c). W przypadku obciążeń z przesunięciem fazowym najbardziej niszczące dla materiału, niezależnie od jego rodzaju, jest przesunięcie fazowe o wartości kąta $\delta = 90^\circ$, co wynika z kształtu przebiegu. O stopniu nieproporcjonalności stanu naprężenia decyduje także stosunek amplitud przebiegów naprężenia stycznego i normalnego λ , co zazwyczaj jest pomijane w pracach analizujących obciążenia nieproporcjonalne.

Rys. 1. Przykładowe przebiegi obciążeń wywołujące nieproporcjonalny stan naprężenia Fig. 1. Examples of loads signals causing non-proportional condition of stress

W pracy przedstawiono propozycję nowego kryterium zmęczeniowego dla obciążeń z przesunięciem fazowym, uwzględniającego wpływ zarówno kąta przesunięcia fazowego, jak i stosunku amplitud na trwałość zmęczeniową.

dr inż. Łukasz PEJKOWSKI, Uniwersytet Technologiczno-Przyrodniczy, Wydział Inżynierii Mechanicznej, al. prof. S. Kaliskiego 7, 85-789 Bydgoszcz, e-mail: lukasz.pejkowski@utp.edu.pl dr hab. inż. Dariusz SKIBICKI, Uniwersytet Technologiczno-Przyrodniczy, Wydział Inżynierii Mechanicznej, al. prof. S. Kaliskiego 7, 85-789 Bydgoszcz, e-mail: dariusz.skibicki@utp.edu.pl

2. BADANIA WPŁYWU STOSUNKU AMPLITUDY NAPRĘŻENIA STYCZNEGO DO NORMALNEGO NA TRWAŁOŚĆ ZMĘCZENIOWĄ

2.1. Warunki badań

Do zbadania wpływu stosunku amplitudy naprężenia stycznego do normalnego λ na trwałość zmęczeniową wybrane zostały dwa materiały potencjalnie wrażliwe na obciążenia nieproporcjonalne [1]: miedź Cu-ETP oraz nierdzewna stal austenityczna X2CrNiMo17-12-2.

Próbki wykonano obróbką skrawaniem z materiału w stanie dostawy. Wymiary próbki podano na rysunku 2.

Rys. 2. Geometria próbek badawczych Fig. 2. Geometry of tested specimens

Wszystkie próby zmęczeniowe zostały przeprowadzone z zastosowaniem sinusoidalnego cyklu wahadłowego (R = -1) o stałej amplitudzie, ze sterowaniem naprężeniem. W przypadku obciążeń złożonych zastosowano przebiegi synchroniczne. Próbki poddane zostały rozciąganiu-ściskaniu, skręcaniu, obciążeniu proporcjonalnemu ($\lambda = 0,5$) oraz obciążeniom nieproporcjonalnym ($0,3 < \lambda < 0,8; \delta = 90^\circ$). Wartości amplitud składowych obciążenia zostały tak dobrane, aby uzyskać tę samą wartość amplitudy pierwiastka kwadratowego z drugiego niezmiennika dewiatora, $\sqrt{J_{2,a}}$ [8], pomnożonego przez stosunek krzywych zmęczeniowych w układzie naprężeń nominalnych dla skręcania i rozciągania-ściskania, λ_m , dla różnych rodzajów obciążeń na danym poziomie obciążenia:

$$\lambda_m \sqrt{J_{2,a}} = const \tag{1}$$

Wielkość ta jest naprężeniem ekwiwalentnym wg hipotezy Hubera-Misesa z uwzględnieniem rzeczywistego stosunku krzywych zmęczeniowych λ_m , w miejsce stałej wartości $\sqrt{3}$. Jej wartość dla miedzi Cu-ETP jest równa ok. 0,53, a dla stali X2CrNiMo17-12-2 ok. 0,8.

2.2. Wyniki badań

Wyniki badań w postaci wykresów zmęczeniowych dla różnych rodzajów obciążeń przedstawione zostały na rysunku 3 dla miedzi Cu-ETP oraz na rysunku 4 dla stali X2CrNiMo17-12-2. Sporządzone zostały także wykresy przedstawiające zależność trwałości od wartości stosunku λ dla obciążeń nieproporcjonalnych (N) na tle trwałości dla rozciągania-ściskania (TC) (rys. 5 i 6).

Rys. 3. Wykresy Wöhlera uzyskane dla miedzi Cu-ETP, dla różnych rodzajów obciążeń: TC – rozciągania-ściskania, T – skręcania, P – obciążenia proporcjonalnego, N – obciążenia nieproporcjonalnego; liczba obok litery onaczającej rodzaj obciążenia wyraża wartość stosunku amplitud λ pomnożoną przez 10

Fig. 3. Wöhler's curves obtained for Cu-ETP copper for various load types: TC – tension-compression, T – torsion, P – proportional load, N – non-proportional load; number next to letter representing load type is a value of amplitudes ratio λ times 10

Rys. 4. Krzywe Wöhlera uzyskane dla stali X2CrNiMo17-12-2, dla różnych rodzajów obciążeń: TC – rozciągania-ściskania, T – skręcania, P – obciążenia proporcjonalnego, N – obciążenia nieproporcjonalnego; liczba obok litery onaczającej rodzaj obciążenia wyraża wartość stosunku amplitud λ pomnożoną przez 10 Fig. 4. Wöhler's curves obtained for X2CrNiMo17-12-2 steel for various load types:

TC – tension-compression, T – torsion, P – proportional load, N – non-proportional load; number next to letter representing load type is a value of amplitudes ratio λ times 10

Rys. 5. Zależność trwałości zmęczeniowej od λ dla Cu-ETP, na poziomie $\sigma_{eq} = 160$ MPa Fig. 5. Dependency of fatigue life on λ for Cu-ETP, at the level of $\sigma_{eq} = 160$ MPa

Fig. 6. Zależność trwałości zmęczeniowej od λ dla stali X2CrNiMo17-12-2, na poziomie $\sigma_{eq} = 310$ MPa Fig. 6. Dependency of fatigue life on λ for X2CrNiMo17-12-2 steel, at the level of $\sigma_{eq} = 310$ MPa

Na podstawie analizy wykresów można stwierdzić, iż badane materiały wykazały wrażliwość na nieproporcjonalność obciążenia, ponieważ w przypadku obciążeń z przesunięciem fazowym widoczne jest obniżenie trwałości zmęczeniowej w stosunku do obciążeń proporcjonalnych. Obniżenie to jest wyraźnie zależne od wartości stosunku λ . Największe obniżenie trwałości w przypadku obu badanych materiałów miało miejsce dla stosunku λ równemu w przybliżeniu wartości λ_m , co ma istotne znaczenie.

3. PROPOZYCJA NOWEGO KRYTERIUM

Tensor stanu naprężenia σ :

$$\sigma_{ij} = \begin{bmatrix} \sigma_{11} & \sigma_{12} & \sigma_{13} \\ \sigma_{21} & \sigma_{22} & \sigma_{23} \\ \sigma_{31} & \sigma_{32} & \sigma_{33} \end{bmatrix}$$
(1)

można rozłożyć na aksjator σ_A , czyli tensor średnich naprężeń normalnych (naprężenie hydrostatyczne):

$$\sigma^{H} = \frac{1}{3}(\sigma_{11} + \sigma_{22} + \sigma_{33}); \ \sigma^{A} = \begin{bmatrix} \sigma_{0} & 0 & 0\\ 0 & \sigma_{0} & 0\\ 0 & 0 & \sigma_{0} \end{bmatrix}$$
(2)

i dewiator [5]:

$$\sigma^D = \sigma_{ij} - \sigma^A \tag{3}$$

Wielkością fizyczną szczególnie istotną podczas określania poziomu i rodzaju obciążenia jest drugi niezmiennik dewiatora J_2 oraz jego pierwiastek kwadratowy $\sqrt{J_2}$. Wartość $\sqrt{J_2}$ obliczyć można macierzowo ze wzoru:

$$\sqrt{J_2} = \sqrt{\frac{1}{2}S:S} \tag{4}$$

gdzie symbol: oznacza iloczyn Frobeniusa [6]:

$$A:B = \sum_{ij} A_{ij} B_{ij} \tag{5}$$

Stosując transformację zaproponowaną przez Papadopoulosa [8]:

$$s_{1} = \frac{\sqrt{3}}{2} \sigma^{D}_{11}, s_{2} = \frac{1}{2} (\sigma^{D}_{22} - \sigma^{D}_{33}), s_{3} = s^{D}_{12}$$

$$s_{4} = s^{D}_{13}, s_{5} = s^{D}_{23}$$
(6)

$$\sqrt{J_2} = \sqrt{s \cdot s} = \sqrt{s \cdot s} \tag{7}$$

Z tego powodu wartość $\sqrt{J_2}$ zinterpretować można jako moduł wektora s w pięciowymiarowej przestrzeni euklidesowej.

W przypadku gdy stan naprężenia ma tylko dwie składowe (np. rozciąganieściskanie ze skręcaniem), składowe s_2 , s_4 i s_5 przyjmują wartość równą zeru i wektor s ma dwie niezerowe współrzędne. Przyjmują one następujące wartości:

$$s_1 = \frac{1}{\sqrt{3}}\sigma_{11}, s_3 = \sigma_{12} \tag{8}$$

Dzięki temu, że wektor *s* ma dwie współrzędne, zmiany jego modułu i położenia w czasie cyklu obciążenia zmęczeniowego przedstawić można graficznie jako tzw. ścieżkę obciążenia. Na rysunku 7 przedstawiono przykładowe ścieżki obciążenia w układzie osi s_1 i s_3 : a) dla obciążenia jednoosiowego, b) dla obciążenia proporcjonalnego, c) dla sinusoidalnego obciążenia nieproporcjonalnego i d) dla obciążenia nieproporcjonalnego o przebiegu innym niż sinusoidalny.

Rys. 7. Przykładowe ścieżki obciążenia dla różnych rodzajów obciążeń zmęczeniowych Fig. 7. Sample load paths for various types of fatigue loads

Klasyczne podejścia [4, 6, 8] wiążą trwałość zmęczeniową z amplitudą (zakresem) drugiego niezmiennika dewiatora $\sqrt{J_{2,a}}$. W przypadku obciążeń proporcjonalnych o różnych, ale stałych wartościach składowych, dla których wartość $\sqrt{J_{2,a}}$ jest taka sama, ścieżka obciążenia jest zawsze odcinkiem. Wraz ze zmianą składowych zmienia się jedynie jego kąt nachylenia do osi układu, a długość pozostaje bez zmian. W przypadku obciążeń nieproporcjonalnych, w trakcie cyklu obciążenia zmęczeniowego, zmienia się nie tylko moduł $\sqrt{J_2}$, ale także stosunek jego składowych, przez co ścieżka obciążenia przyjmuje kształt różny od prostej.

Na rysunku 8 przedstawione zostały ścieżki dla obciążeń o przebiegach sinusoidalnych z przesunięciem fazowym, dających tę samą wartość $\sqrt{J_{2,a}}$, o różnych wartościach amplitud składowych i różnych wartościach kąta przesunięcia fazowego δ . Dzięki takiej graficznej interpretacji zauważyć można, iż mimo takiego samego zakresu ścieżek $\sqrt{J_2}$, jego wartość średnia dla okresu cyklu jest różna.

Rys. 8. Ścieżki $\sqrt{J_2}$ dla obciążeń o przebiegach sinusoidalnych z przesunięciem fazowym, dających tę samą wartość $\sqrt{J_{2,a}}$; a) o różnych wartościach amplitud składowych i b) o różnych wartościach kąta przesunięcia fazowego δ

Fig. 8. $\sqrt{J_2}$ paths for out-of-phase sine loads, giving the same value of $\sqrt{J_{2,a}}$: a) with various values of component amplitudes and b) with various values of phase shift angle δ

Proponowane kryterium oparte jest na hipotezie zakładającej, że trwałość zmęczeniową powiązać należy nie tylko z amplitudą (zakresem zmienności) drugiego niezmiennika dewiatora stanu naprężenia, $\sqrt{J_{2,a}}$, ale także z jego wartością średnią w czasie cyklu obciążenia zmęczeniowego $\sqrt{J_{2,m(t)}}$.

Kolejnym elementem modelu jest zastąpienie stałej wielkości $1/\sqrt{3}$, występującej we wzorze na składową s_1 , rzeczywistym stosunkiem charakterystyk dla skręcania i rozciągania-ściskania (lub stosunkiem granic zmęczenia), λ_m [9]. Skutkiem tego, ścieżki obciążenia o takim samym stosunku składowych, dla różnych materiałów będą miały różny kształt, a w konsekwencji różne wartości $\sqrt{J_{2,a}}$ i $\sqrt{J_{2,m(t)}}$ (rys. 9).

Rys. 9. Ścieżki $\sqrt{J_2}$ o równym stosunku amplitud składowych, po uwzględnieniu rzeczywistego stosunku charakterystyk zmęczeniowych dla skręcania i rozciągania-ściskania λ_m

Fig. 9. $\sqrt{J_2}$ paths with equal components amplitude ratio, after taking into account the value of torsion to tension-compression fatigue curves ratio λ_m

Po uwzględnieniu powyższych założeń, zaproponowany został następujący wzór na naprężenie ekwiwalentne:

$$\sigma_{eq} = \frac{Z_{rc}}{Z_{so}} \left(\sqrt{J_{2,a}}^* + \frac{\sqrt{J_2}^* - \frac{2\sqrt{J_{2,a}}^*}{\pi}}{2} \right)$$
(9)

W powyższym zapisie symbol $\sqrt{J_2}^*$ oznacza wartość drugiego niezmiennika dewiatora zmodyfikowaną o rzeczywisty stosunek charakterystyk zmęczeniowych λ_m , a $\sqrt{J_{2,m(t)}}^*$ jego średnią wartość w cyklu obciążenia.

4. WERYFIKACJA EKSPERYMENTALNA ZAPROPONOWANEGO KRYTERIUM

Zaproponowane kryterium zostało zweryfikowane na podstawie wyników badań eksperymentalnych opisanych w punkcie 2. Na rysunkach 10 i 11 przedstawione zostały wykresy zmęczeniowe sporządzone dla naprężeń ekwiwalentnych obliczonych wg kryterium dla miedzi Cu-ETP oraz stali X2CrNiMo17-12-2.

Rys. 10. Wykresy zmęczeniowe dla różnych rodzajów obciążeń uzyskane dla miedzi Cu-ETP w układzie naprężeń ekwiwalentnych obliczonych wg zaproponowanego kryterium
 Fig. 10. Fatigue curves for various types of loads obtained for Cu-ETP copper in equivalent stresses, according to proposed criterion, coordinates system

Rys. 11. Wykresy zmęczeniowe dla różnych rodzajów obciążeń uzyskane dla X2CrNiMo17-12-2 w układzie naprężeń ekwiwalentnych obliczonych wg zaproponowanego kryterium Fig. 11. Fatigue curves for various types of loads obtained for X2CrNiMo17-12-2 steel in

equivalent stresses, according to proposed criterion, coordinates system

W przypadku miedzi Cu-ETP wykresy zmęczeniowe dla wszystkich rodzajów obciążeń w znacznym stopniu pokrywają się, co świadczy o poprawnym oszacowaniu naprężenia ekwiwalentnego. W przypadku stali X2CrNiMo17-12-2 wykres dla obciążenia najbardziej nieproporcjonalnego leży nieco powyżej wykresów dla obciążeń proporcjonalnych. Oznacza to, że naprężenie ekwiwalentne zostało przeszacowane. Z tego powodu trwałości szacowane na jego podstawie są zawyżone, co oznacza wynik konserwatywny. Rozrzut wyników może być częściowo spowodowany znacznym udziałem odkształceń plastycznych, ponieważ jest on większy dla niższych trwałości.

5. PODSUMOWANIE

Przeprowadzone badania wykazały duży wpływ wartości współczynnika λ na trwałość zmęczeniową w przypadku obciążeń nieproporcjonalnych.

Zaproponowano metodę oceny nieproporcjonalności obciążenia zmęczeniowego, wykorzystującą wartość średnią $\sqrt{J_2}^*$ w cyklu obciążenia nieproporcjonalnego.

Przedstawiona metoda szacowania trwałości zmęczeniowej pozwala na uzyskanie wyników konserwatywnych (bezpiecznych) dla badanych materiałów, wrażliwych na nieproporcjonalność obciążenia.

Dodać także należy, że w porównaniu z innymi modelami obliczenia oparte na niezmiennikach stanu naprężenia trwają o wiele krócej. Mogą być z tego powodu łatwiej implementowane w różnego rodzaju narzędziach do obliczeń inżynierskich.

LITERATURA

- BORODII M.V., SHUKAEV S.M.: Additional cyclic strain hardening and its relation to material structure, mechanical characteristics, and lifetime. International Journal of Fatigue 29, 2007, 1184-1191.
- [2] ELLYIN F., GOLOS K., XIA Z.: In-phase and out-of-phase multiaxial fatigue. Journal of Engineering Materials and Technology-Transactions of the Asme 113, 1991, 112-118.
- [3] GAWĘCKI A.: Mechanika materiałów i konstrukcji prętowych. Wyd. Politechniki Poznańskiej, 1998.
- [4] LI B., REIS L., de FREITAS M.: Comparative study of multiaxial fatigue damage models for ductile structural steels and brittle materials. International Journal of Fatigue 31, 2009, 1895--1906.
- [5] McDIARMID D.L.: Fatigue under out-of-phase bending and torsion. Fatigue & Fracture of Engineering Materials & Structures 9, 1986, 457-475.
- [6] MEGGIOLARO M.A., de CASTRO J.T.P.: An improved multiaxial rainflow algorithm for non-proportional stress or strain histories - Part I: Enclosing surface methods. International Journal of Fatigue 42, 2012, 217-226.
- [7] MEYER C.D.: Matrix Analysis and Applied Linear Algebra. SIAM 2000.
- [8] PAPADOPOULOS I.V., DAVOLI P., GORLA C., FILIPPINI M., BERNASCONI A.: A comparative study of multiaxial high-cycle fatigue criteria for metals. International Journal of Fatigue 19, 1997, 219-235.
- [9] ZENNER H., SIMBURGER A., LIU J.: On the fatigue limit of ductile metals under complex multiaxial loading. International Journal of Fatigue 22, 2000, 137-145.

FATIGUE CRITERION FOR OUT-OF-PHASE LOADS

Summary: In hereby work a proposal of new fatigue criterion for non-proportional loads, which includes influence of value of phase shift angle δ and shear to normal stress ratio λ , onto fatigue life.

Key words: fatigue of materials, multiaxial fatigue, fatigue life, non-proportional loads, fatigue criterion